Brief Academic Profile of Dr. Anil Kumar, Indian Institute of Technology Roorkee

1. Name and full correspondence address Dr. Anil Kumar, FRSC, FNASc

Dept. of Chemistry, IIT Roorkee, Roorkee -247667,

Uttarakhand

Present Designation Professor (Emeritus Fellow)

2. Email(s) and contact number(s) anil.kumar@cy.iitr.ac.in; akmshfcy@gmail.com

3. Institution Indian Institute of Technology Roorkee

4. Gender (M/F/T) M

5. Category Gen/SC/ST/OBC Gen

6. Whether differently abled (Yes/No) No

Academic Achievements

7. <u>Academic Administrative Experience</u>:

- Professor & Head, Department of Chemistry (May 2013 to February 2016)
 Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, INDIA.
- **Founder Head,** Centre of Excellence **Nanotechnology** (June 2006 to Dec. 2011), *Indian Institute of Technology Roorkee*, Roorkee-247667, Uttarakhand, INDIA.

8. Professional Recognition/ Award/ Prize/ Fellowship received by the applicant:

A-a. Professional Recognition

S No	Academy Fellowships	Year
1.	Selected NASI-Senior Scientist	2019
	Platinum Jubilee Fellow	
	The National Academy of Sciences,	
	Allahabad, India	
2.	Fellow of	2018
	Royal Society of Chemistry (FRSC)	
3.	Elected Fellow,	2003
	The National Academy of Sciences,	
	Allahabad, India	
4.	Elected Member	1982
	American Chemical Society	
1		

b. Other Award/Prize/Fellowships

S.No.	Awards/Recognition	Year
1.	G.B. Pant Institute Chair Professor,	2018 -2021
	IIT Roorkee, Indian Institute of Technology Roorkee, Roorkee	
2.	Bharat Vikas Award – 2017 For outstanding performance in the field of "Development of Nanostructured Materials", Institute of Self Reliance, Bhubaneshwar, Odisha.	2017
3.	Selected for HAG scale by IIT Roorkee	2013
4.	Received Certificate of Appreciation by American Chemical Society for valuable contribution and dedicated service in the Peer Review of manuscripts submitted to ACS Journals.	2011
5.	Star Performer	2003-04
	Selected for Academic and Professional	and
	Excellence, Indian Institute of Technology Roorkee, Roorkee	2004-05
6.	First Khosla Research Prize and a Medal on a Research Paper on "Electronic properties of Q- CdS clusters stabilized by adenine" I.I.T. Roorkee.	2002
7.	Khosla Research Award and a Silver Medal on a Research Paper, "Photoluminescence of colloidal cadmium sulfide in the presence of aniline - study of the CdS – sensistized photocatalytic reaction", Univ. of Roorkee.	1993
8.	Guest Scientist	Feb. 1986 - Feb. 1988
	Hahn-Meitner-Institut, Berlin, Germany	(~2 Years)
9.	CSIR Pool Officer	April 1982- June 1983
10.	Research Associate Radiation Laboratory, Univ. of Notre Dame, Notre Dame, Indiana – 46556, USA	1979 - 1982 (-3 Years)
11a.	Received CSIR (New Delhi) Fellowships throughout research career in India as JRF	1973-77
11b.	CSIR Postdoctoral Fellow	1978-79

12.	Received Gold Medal and a Certificate Being	1973
	Topper in M.Sc., S.D. College, Muzaffarnagar	
	(Meerut University)	

(B). Recognitions

- Our innovation on "Nitrogen doped Reduced Graphene Oxide (N-rGO) for High-Performance Supercapacitor" contributed by Anil Kumar and Sahil Thareja has been identified by the prestigious Confederation of Indian Industry (CII) among the notable innovations from IIT Roorkee during 2021.
- Ph.D. Thesis Supervised: "Synthesis of N-Doped Reduced Graphene Oxide and its Nanohybrids as Electrode Material(S) for Electrochemical Applications An Analysis of the Role of different Aqueous Electrolytes on their Supercapacitive Performance" by Sahil Thareja, fetched INYAS National Research Excellence Award 2021 and among the Best Thesis in Electrochemistry.
- Member of International Scientific Committee, Trombay Symposium on Radiation and Photochemistry-2022, and Chaired a Session in this Prestigious Conference on 12th January 2022.
- Delivered an Invited Lecture as a Resource Person in the Orientation Program to B. Tech 1st year Students (Freshers) as per MHRD Guidelines at NIT Kurukshetra on "Role Of Basic Sciences to The Development of Advanced Technology" on 9th August 2019.
- The paper, entitled "High Performance Symmetric Supercapacitor based on Nitrogen doped Reduced Graphene Oxide" by Sahil Thareja and Anil Kumar, presented by Sahil Thareja won the Best Poster Award in DAE-BRNS sponsored conference on Electrochemistry in Industry, Health and Environment-2020 (EIHE-2020) held during 21-25th January 2020, BARC, Mumbai, India.
- Invited for several conferences abroad and in India as an Invited Speaker / Organizing Committee Member.
- The paper, entitled "Synthesis of Glucose-Mediated Ag-γ- Fe₂O₃ Multifunctional Nanocomposites A Study of their Catalytic and Antibacterial Activities" by Mandeep Kaloti, Anil Kumar and N.K. Navani, presented by Mandeep Kaloti won the Second-Best Poster Award in International Conference on Advanced Materials for Energy, Environment and Health (ICAM-2016) held during 04-07th March 2016, IIT Roorkee, Roorkee, India.
- Our paper, entitled "Viscoelastic Properties of Superparamagnetic 5'-Adenosine Monophosphate Mediated Porous β–FeOOH Hydrogel Its Loading, and Release Capabilities" by Anil Kumar and Sudhir K. Gupta and presented by Sudhir K. Gupta won the

Best Poster Award in 9th India Japan Bilateral Conference (**BICON-2014**) on Advanced Material Science and Engineering.

- **Honorable Guest**, 2nd International Conference & Exhibition on Materials Science and Engineering, October 07-09, *2013*, *Las Vegas*, *USA*.
- Expert, Annual Review Committee, Radiation and Photochemistry Division, *BARC*, Mumbai, March 2012 and June 2008.
- Member, Expert Committee, *CSIR* (SRF/RA) during 2018 & 2008-10.
- Two of our research papers on 'Nanotechnology Aspects' have been listed/selected under the most accessed papers in the first quarter in 'Langmuir' (2007) and 'Nanotechnology' (2009).
- 'Synthesis of Fe₂O₃/Ag Core Shell Nanocomposites' by Anil Kumar and Aditi Singhal and presented by Ms. Aditi Singhal, won the Second Poster Prize in "Nanomaterials and Devices Processing and Applications" (NADPA 2008).
- **Member**, DST (New Delhi), National Management Committee for the National Centre for Ultrafast Processes, Univ. of Madras during *1999-2003*.

(C). <u>Professional Activities</u>:

- ❖ Elected Member, American Chemical Society (ACS), USA (1982); Member (2007 onwards contd.).
- ❖ Fellow, Royal Society of Chemistry (RSC), UK, 2018 onwards
- **♦ Member**, Mirror Committee on Nanotechnology, Bureau of Indian Standards, New Delhi, 2007 2014.
- ❖ Member, Sigma Xi, The Scientific Research Society, USA (1981).
- ❖ Life Member, Indian Society for Radiation and Photochemical Sciences (ISRAPS), Mumbai (1999).
- **Elected Member**, Life Member, Indian Chemical Society, Kolkata.
- **Life Member**, Chemical Research Society of India, Bangalore.
- ❖ Life Member, Indian Association of Solid State Chemists and Allied Scientists (ISCAS).

9. Teaching & Research Experience (Please see parts A to J)

Areas of Academic Interest:

Molecular Spectroscopy, Kinetics and Photochemistry, Radiation Chemistry, Nanoscale materials, Chemical Thermodynamics, Surface Chemistry and General Physical Chemistry.

(A). Teaching Experience (Approx. in years)

Undergraduate 36 Postgraduate 37

We have made several *innovative contributions to the teaching and research* in the areas related to Physical Chemistry. In particular, we have developed teaching curriculum on *kinetics, photo- and radiation chemistry, spectroscopy, nanoscale materials, supramolecular chemistry, thermodynamics, surface chemistry and undergraduate physical chemistry, and have been instrumental in developing*

several advanced research facilities at the institute as a faculty as well as being the Founder Head, Centre of Excellence - Nanotechnology and Head, Department of Chemistry.

(B) Response Report of the Courses Taught during Autumn 2019- Autumn 2022

UG/PG	Year	Course	No. of Registered Students	Faculty Score
UG	Autumn (2021-22)	CYN-001 (Physical Chemistry)	207	4.37
PG	Autumn (2021-22)	CYN-503 (Thermodynamics, Interfaces & Solids)	34	4.40
UG	Autumn (2020-21)	CYN-001 (Physical Chemistry)	170	3.99
PG	Autumn (2020-21)	CYN-503 (Thermodynamics, Interfaces & Solids)	49	4.24
UG	Spring (2020- 21)	CYN-006 (General Chemistry –II)	91	3.66
PG	Spring (2020- 21)	CYN-504 (Kinetics & Photochemistry)	48	3.42
PG	Autumn (2019-20)	CYN-629 (Advanced Physical Chemistry)	09	4.02
PG	Autumn (2019-20)	CYN-503 (Thermodynamics, Interfaces & Solids)	42	3.89
PG	Autumn (2019-20)	CYN-511 (Laboratory-I)	21	4.07
UG	Autumn (2019-20)	CYN-001 (General Chemistry –II)	133	3.44
PG	Spring (2019- 20)	CYN-508 (Molecular Spectroscopy)	41	4.15
PG	Spring (2019- 20)	CYN-504 (Kinetics & Photochemistry)	41	4.26
UG	Spring (2019- 20)	CYN-006 (General Chemistry –II)	73	3.67

(C) Research Publications in Journals / Presented in Conferences:

Total number of Publications in SCI Journals: 98

Refereed Journals – Total 99 [ACS 21 (02 in JACS); RSC 24; Elsevier 18; Wiley 05; IOP 03; Springer 04; Taylor & Francis 01; Indian Journals 08; Others 15]

Total Citations as per Google Scholar Data (*Excluding Self-Citations*) (Approx.): 1999 (~1700); hindex 24; i10-index 56. Citation Last 05 Years since 2017 (as per Google Scholar data) > 683; h-index 14; i10-index 22.

Some Highlights of our Research Work

- We have taken several *research initiatives* at IIT Roorkee (erstwhile UOR). Some of these also got recognition globally as is reflected by *citations* (approx.) of our *papers* in: different books (35); important international journals such as: *Angew. Chem. /Nature including Scientific Reports and Nature Nanotechnology* (12); ACS (>157); RSC (>120); Elsevier/Springer/Wiley (>560); and other journals as well as thesis (370), excluding *self-citations as per google record*.
- Most of our research work, contributed in India after joining faculty position, is *primarily carried out* at UOR/IITR and has authorship(s) with my students (largely with 2 authors).
- Many of our Ph.D. students, willing to visit abroad, got *fellowship(s)* in good institutions and after returning back several of them are occupying good *teaching/scientific* positions. My first student has held/holding *key position(s)* in *pharma/chemical* industries.
- Since last 20 years, we have mainly focused on *greener* nano-technological approach to *design* new biocompatible materials for their multifunctional applications. Our recent publications and research projects (ongoing/completed) also reflect these objectives. During about last 5.5 years, i.e. from (2016 to present), we have published about 16 papers in International Journals of repute with an average impact factor of > 5.0, which indicates the importance of our work in the context of current scientific importance.
- (D). <u>List of Research Papers Published</u> in the <u>Area of Nanotechnology/Nanochemistry</u> (Note: Since 1985 we are mainly working on Nanomaterials related to <u>Energy Applications</u> and publishing this work in fairly high impact journals with an average impact factor of ~ 5.7).

Total Paper Published in this Area – 68 Nos.

S. No.	Details of Published Research Paper	Q Ranking of Jouranal as per SJR	Impact Factor (2020)
1.	J	Q1 (1.4)	1.10
	In-situ Wet Synthesis of N-ZnO/N-rGO Nanohybrids as Electrode		4.126
	Material for High Performance Supercapacitor and Simultaneous		
	Non-Enzymatic Electrochemical Sensing of Ascorbic acid,		
	Dopamine and Uric acid at their Interface		
	J. Phys. Chem. C, 125, 24837-24848 (2021).		
2.	Atul Kumar, Anil Kumar and G.D Varma	Q1 (1.9)	
	Ultrafast resistive type γ-Fe ₂ O ₃ -rGO nanohybrids based humidity		7.393
	sensor – a respiratory monitoring tool		
	J. Mater. Chem. C, 9, 8002–8010 (2021).		

3.	S. Thareja and Anil Kumar	Q1 (1.878)	
	Water-in-salt' electrolyte based high voltage (2.7 V) sustainable		8.198
	symmetric supercapacitor with superb electrochemical		
	performance - an analysis of the role of electrolytic ions in		
	extending the cell voltage.		
	ACS Sustainable Chem. Eng. 9, 2338-2347 (2021).		
4.	Priyanka and Anil Kumar Smart soft supramolecular hybrid hydrogels modulated by Zn ²⁺ / Ag NPs with unique multifunctional properties and applications. Dalton Trans. , 49, 15095–15108 (2020).	Q1 (0.98)	4.390
5.	Priyanka and Anil Kumar Multistimulus-Responsive Supramolecular Hydrogels Derived by <i>in situ</i> Coating of Ag Nanoparticles on 5'-CMP-Capped β-FeOOH Binary Nanohybrids with Multifunctional Features and Applications. ACS Omega 5, 13672-13684 (2020).	Q1 (0.78)	3.512
6.	Ajay Kumar, H. Joshi and Anil Kumar	Q1 (1.11)	
0.	Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives. Separation and Purification Rev. 1-31, (2020); DOI:	(3.12)	5.324
7.	10.1080/15422119.2020.1744649	01 (0.01)	
7.	Sahil Thareja and Anil Kumar High Electrochemical Performance of 2.5 V Aqueous Symmetric Supercapacitor based on Nitrogen doped Reduced Graphene Oxide. Energy Technol. (Wiley) 1901339 (1 to 11) (2020); (DOI: 10.1002/ente.201901339).	Q1 (0.91)	3.33
8.	Anil Kumar and Priyanka	Q1 (0.69)	
	Environmentally benign pH-responsive cytidine-5'-monophosphate molecule-mediated akaganeite (5'-CMP-β-FeOOH) soft supramolecular hydrogels induced by the puckering of ribose sugar with efficient loading/release capabilities. New J. Chem. 43, 14997-15013 (2019).		3.591
9.	Komal Gupta and Anil Kumar	Q1 (1.9)	
	Zn ²⁺ /Cd ²⁺ -RNA-mediated Intense White-light-emitting Colloidal CdSe Nanostructures in Aqueous Medium – Enhanced Photophysics and Porous Morphology Induced by Conformational Change in RNA. <i>J. Mater. Chem. C</i> , <i>7</i> , 692-708 (2019).		7.393
10.	Anil Kumar and Komal Gupta	Q1 (1.4)	
	Supramolecular Assisted RNA-Templated Fluorescing Colloidal CdSe QDs Organized in Porous Morphology in the Presence of 1,3-Diaminopropane – Study of their Multifunctional Behavior J. Phys. Chem. C <i>122</i> , 7898–7915 (2018).		4.126
11.	M. Kaloti and Anil Kumar Sustainable Catalytic Activity of Ag-Coated Chitosan-Capped Fe ₂ O ₃ Superparamagnetic Binary Nanohybrids (AgFe ₂ O ₃ @CS) for the Reduction of Environmentally Hazardous Dyes - A Kinetic	Q1 (0.78)	3.512

	Study of the Operating Mechanism Analyzing Methyl Orange Reduction ACS Omega, 3 (2), 1529–1545 (2018).		
12.	M. Khandelwal and Anil Kumar "Electrochemical behavior of glycine mediated N-doped reduced graphene oxide" New J. Chem., 41, 8333-8340 (2017).	Q1 (0.69)	3.591
13.	Anil Kumar and Komal Gupta RNA-mediated fluorescent colloidal CdSe nanostructures in aqueous medium - analysis of Cd ²⁺ induced folding of RNA associated with morphological transformation (0D to 1D), change in photophysics and selective Hg ²⁺ sensing. J. Mater. Chem. (A), 5, 6146-6163 (2017).	Q1 (3.64)	12.732
14.	S. Firdoz and Anil Kumar ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase. <i>IET Nanobiotechnol.</i> , 11 (3), 329-335 (2017). doi: 10.1049/iet-nbt.2016.0115	Q2 (0.37)	1.859
15.	M. Kaloti and Anil Kumar Synthesis of Chitosan-Mediated Silver Coated γ-Fe ₂ O ₃ (Ag-γ-Fe ₂ O ₃ @Cs) Superparamagnetic Binary Nanohybrids for Multifunctional Applications J. Phys. Chem. C <i>120</i> , 17627-17644 (2016).	Q1 (1.4)	4.126
16.	M. Khandelwal and Anil Kumar One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Dalton Trans. , 45, 5180-5195 (2016).	Q1 (1.05)	4.390
17.	M. Khandelwal and Anil Kumar One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications J. Mater. Chem. (A), 3, 22975-22988 (2015).	Q1 (3.64)	12.732
18.	M. Kaloti, Anil Kumar and N.K. Navani Synthesis of glucose-mediated Ag - γ-Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of their catalytic activity for 4-nitrophenol reduction. Green Chem. 17, 4786-4799 (2015).	Q1 (2.22)	10.182
19.	Umesh Kumar Gaur, Anil Kumar and G D Varma Fe-induced morphological transformation of 1-D CuO nanochains to porous nanofibers with enhanced optical, magnetic and ferroelectric properties. J. Mater. Chem. C , <i>3</i> , 4297- 4307 (2015).	Q1 (1.9)	7.393

20.	Anil Kumar, B. Singh and K. Gupta Photophysical aspects of varying Zn ²⁺ / PbSe nanostructures mediated by RNA leading to the formation of honeycomb-like novel porous morphology. J. Phys. Chem. (C), 119, 6314-6323 (2015).	Q1 (1.4)	4.126
21.	Anil Kumar and S. K. Gupta Supramolecular–directed novel superparamagnetic 5'-adenosine monophosphate templated β-FeOOH hydrogel with enhanced multi-functional properties. Green Chem., 17, 2524–2537 (2015).	Q1 (2.22)	10.182
22.	Anil Kumar and M. Khandelwal A novel synthesis of ultra thin graphene sheets for energy storage applications using malonic acid as a reducing agent. J. Mater. Chem. (A), 2, 20345–20357 (2014).	Q1 (3.64)	12.732
	Anil Kumar and S.K. Gupta 5'-guanosine monophosphate mediated biocompatible porous hydrogel of β-FeOOH - Viscoelastic behavior, loading and release capabilities of freeze dried gel. J. Phys. Chem. (B), 118, 10543-10551 (2014).	Q1 (0.86)	2.991
24.	Anil Kumar and V. Kumar Biotemplated inorganic nanostructures: Supramolecular directed nanosystems of semiconductor(s)/metal(s) mediated by nucleic acids and their properties. Chem. Rev. (ACS), 114, 7044-7078 (2014).	Q1 (20.53)	60.622
25.	Anil Kumar and M. Khandelwal Amino acid mediated functionalization and reduction of graphene oxide – synthesis and theformation mechanism of nitrogen-doped graphene. New J. Chem., 38, 3457-3467 (2014).	Q1 (0.69)	3.591
26.	U. K. Gaur, Anil Kumar and G. D. Varma The synthesis of self-assembled 1-D CuO nanochains in aqueous medium and a study of their multifunctional features. CrystEngComm (RSC) , <i>16</i> , 3005–3014 (2014).	Q1 (0.81)	3.545
27.	Anil Kumar and S.K. Gupta Synthesis of 5'-GMP-mediated porous hydrogel containing β - FeOOH nanostructures: optimization of its morphology, optical and magnetic properties. J. Mater. Chem. (B), 1, 5818-5830 (2013).	Q1 (1.32)	6.331
28.	Anil Kumar and B. Singh Optoelectronic properties of dual emitting RNA mediated colloidal PbSe nanostructures. Dalton Trans., 42, 11455–11464 (2013).	Q1 (0.98)	4.390

29.	Anil Kumar and S.K. Gupta Synthesis of adenine mediated superparamagnetic colloidal β- FeOOH Nanostructure(s) – study of their morphological changes and magnetic behavior. J. Nanopart. Res. 15:1466, 1-16 (2013) (DOI 10.1007/s11051-	Q2 (0.45)	2.253
30.	Anil Kumar and B. Singh Zn ²⁺ induced folding of RNA to produce honeycomb like RNA - mediated fluorescing Zn ²⁺ /PbSe nanostructures. J. Phys. Chem. (C) , <i>117</i> , 5386–5396 (2013).	Q1 (1.4)	4.189
31.	Anil Kumar, V. Chaudhary and Vinit Kumar Synthesis of guanosine 5'-monophosphate (GMP) - mediated Ag/CdS nanohybrids - their self-assembly and optoelectronic properties. Eur. J. Inorg. Chem. 269-279 (2013).	Q1 (0.67)	2.529
32.	Anil Kumar and B. Singh RNA templated water soluble Mg ²⁺ / PbSe porous nanostructures with dual Fuorescence. RSC Advances, 2, 9079–9090 (2012).	Q1 (0.75)	3.36
33.	Anil Kumar and B. Singh Synthesis and photophysics of red emitting RNA templated PbSe nanostructures. Chem. Commun., 47 (14), 4144 - 4146 (2011).	Q1 (1.84)	6.222
34.	Anil Kumar and A. Singhal Optical, photophysical and magnetic behavior of GMP-templated binary (β - Fe ₂ O ₃ /CdS) and ternary (β-Fe ₂ O ₃ /Ag/CdS) nanohybrids. J. Mater. Chem., 21, 481-496 (2011).	Not assigned	6.101 (Old)
35.	Anil Kumar and A. Singhal Optical and magnetic behavior of Ag encapsulated β -Fe ₂ O ₃ coreshell hollow Nanotubes. Mater. Chem. Phys. 131, 230-240 (2011).	Q2 (0.76)	4.094
36.	S. Firdoz, Ma Fang, XiuliYue, Zhifei Dai, Anil Kumar , Jiangbin A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water. Talanta , 83, 269 - 273 (2010).	Q1 (1.18)	6.057
37.	Anil Kumar and V. Kumar Synthesis and optical properties of Guanosine 5'-monophosphate - mediated CdS nanostructures: An analysis of their structure, morphology and electronic properties. Inorg. Chem., 48, 11032-11038 (2009).	Q1 (1.35)	5.165

	· · · · · · · · · · · · · · · · · · ·		
38.	Anil Kumar, A. Jakhmola and V. Chaudhary Synthesis and photophysics of colloidal ZnS/PbS/ZnS	Q1 (0.71)	3.306
	nanocomposites - an analysis of dynamics of charge carriers. J. Photochem. Photobiol. A: Chem. 208, 195-202 (2009).		
30	Anil Kumar and V. Kumar	Q1 (1.84)	
39.	Supramolecular – directed synthesis of RNA-mediated CdS/ZnS nanotubes. Chem. Commun., 5433-5435 (2009).	Q1 (1.04)	6.222
	Chem. Commun., 3433-3433 (2007).		
40.	Anil Kumar and A. Singhal Synthesis of colloidal silver iron oxide nanoparticles – study of their optical and magnetic behavior. Nanotechnology, 20, 295606-295616 (2009).	Q1 (0.93)	3.874
41.	Anil Kumar and A. Jakhmola RNA-templated fluorescent Zn/PbS (PbS + Zn ²⁺) supernanostructures. J. Phys. Chem. (C), 113, 9553-9559 (2009).	Q1 (1.4)	4.126
42.	Anil Kumar and V. Chaudhary Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids. Nanotechnology, 20, 095703 - 095712 (2009).	Q1 (0.93)	3.874
43.	Anil Kumar and V. Kumar Self-assemblies from RNA-templated colloidal CdS nanostructures. J. Phys. Chem. (C), 112, 3633-3640 (2008).	Q1 (1.4)	4.126
44.	Anil Kumar and A. Singhal Synthesis of colloidal β-Fe ₂ O ₃ nanostructures - influence of addition of Co ²⁺ on their morphology and magnetic behavior. Nanotechnology, 18, 475703-475710 (2007).	Q1 (0.93)	3.874
45.	Anil Kumar and V. Chaudhary Optical and photophysical properties of Ag/CdS nanocomposites – an analysis of relaxation of charge carries. J. Photochem. Photobiol. A: Chem. 189, 272-279 (2007).	Q1 (0.71)	3.306
46.	Anil Kumar and A. Jakhmola RNA – mediated fluorescent Q-PbS nanoparticles. Langmuir (Lett.) 23, 2915-2918 (2007).	Q1 (1.04)	3.882
47.	Anil Kumar and N. Mathur Photocatalytic degradation of aniline at the interface of TiO ₂ suspensions containing carbonate ions. J. Colloid Interface Sci. 300, 244-252 (2006).	Q1 (1.54)	8.128

48.	Anil Kumar and A. Jakhmola	Q1 (1.54)	
	Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS		8.128
	and PbS/ZnS semiconductor nanoparticles. J. Colloid Interface Sci. 297, 607-617 (2006).		
49.	Anil Kumar	Q3 (0.21)	
	Physicochemical and photochemical properties of nanoscale semiconductors - dynamics of the charge carriers.		0.416
	Natl. Acad. Sci. Lett., 28, 1-11 (2005). (Published as a Lead Article)		
50.	Anil Kumar and N. Mathur	Q1 (1.27)	5.006
	Photocatalytic oxidation of aniline using Ag ⁺ -loaded TiO ₂ suspensions. Appl. Catal. A: Gen. 275,189-197 (2004).		5.006
	11ppii Ciiiii 11i Geiii 270,107 177 (2001)i		
51.	Anil Kumar and S. Mital	NA	3.687
	Electronic and photocatalytic properties of purine(s)-capped Q-CdS nanoparticles in the presence of tryptophol.		3.007
	J. Mol. Catal. A: Chem. 219, 65-71 (2004).		
52.	Anil Kumar and S. Mital	Q2 (0.43)	
	Synthesis and photophysics of 6-dimethylaminopurine-capped Q-CdS nanoparticles – astudy of its photocatalytic behavior. Int. J. Photoenerg. <i>6</i> (2), 61-68 (2004).		2.113
53.	Anil Kumar and S. Mital	Q1 (1.54)	
	Photophysics and photocatalytic behavior of composite CdS-		8.128
	purine nanoparticles in the presence of certain indoles. J. Colloid Interface Sci. 265, 432-438 (2003).		
54.	Anil Kumar and A.K. Jain	Q1 (0.71)	
	Photophysics and photocatalytic properties of Ag ⁺ - doped composite (CdS-TiO ₂) colloidal semiconductor.		3.306
	J. Photochem. Photobiol. A: Chem. 156, 207-218 (2003).		
55.	Anil Kumar and S. Mital	Q2 (0.7)	
	CdSnanocrystallites.		2.831
	Photochem. Photobiol. Sci. 1, 737-741 (2002).		
56.	Anil Kumar and S. Mital Electronic properties of O-CdS clusters stabilized by adenine	Q1 (1.54)	8.128
	J. Colloid Interface Sci. 240, 459-466 (2001).		0.120
56.	Photochem. Photobiol. Sci. 1, 737-741 (2002). Anil Kumar and S. Mital Electronic properties of Q-CdS clusters stabilized by adenine.	Q1 (1.54)	

57.	Anil Kumar and D.P.S. Negi Photophysics and photocatalytic properties of Cd(OH) ₂ -coated Q-CdS clusters in the presence of guanine and related compounds. J. Colloid Interface Sci. 238, 310-317 (2001).	Q1 (1.54)	8.128
58.	Anil Kumar and A. K. Jain Photophysics and photochemistry of colloidal CdS-TiO ₂ coupled semiconductors - Photocatalytic oxidation of indole. J. Mol. Catal. A: Chem. 165, 267-275 (2001).	NA	3.687
59.	Anil Kumar and D.P.S. Negi Photocatalytic and photophysical behaviours of Cd(OH) ₂ - coated Q-CdS in the presence of tryptophan. J. Photochem. Photobiol. A: Chem., 134, 199-207 (2000).	Q1 (0.71)	3.306
60.	Anil Kumar and A. Kumari Photocatalytic oxidative C-C bond cleavage of 1,2-ethanediol initiated by aqueous titanium dioxide dispersion - influence of Ag ⁺ on the catalytic activity. Res. Chem. Intermed., 25, 695-708 (1999).	Q2 (0.42)	2.262
61.	Anil Kumar and S. Kumar Colloidal CdS induced photocatalytic reaction of 2-methylindole - mechanistic analysis of oxidation of indoles. J. Phys. Org. Chem. 11, 277-282 (1998).	Q3 (0.33)	2.391
62.	Anil Kumar, S. Kumar and D.P.S. Negi Photocatalytic oxidative C-C bond cleavage of the pyrrole ring in 3-methylindole induced by colloidal CdS particles. J. Chem. Res. (S), 1, 54-55 (1998).	-	0.67 RSC Journal (Old)
63.	Anil Kumar and S. Kumar Catalytic effect of Ag ⁺ in colloidal CdS- induced photooxidation of aniline. Chem. Lett. (8), 711-712 (1996).	Q2 (0.49)	1.389
64.	Anil Kumar and S. Kumar Enhancement of luminescence of CdS in presence of indoles - study of CdS - sensitized reaction of indole. J. Photochem. Photobiol. A: Chem., 83, 251-256 (1994).	Q1 (0.71)	3.306
65.	Anil Kumar and S. Kumar Photoluminescence of colloidal cadmium sulfide in the presence of aniline - study of the CdS - sensistized photocata ytic reaction. J. Photochem. Photobiol. A: Chem. 69, 91-95 (1992).	Q1 (0.71)	3.306
66.	Anil Kumar Photoinduced processes in colloidal semiconductors –	-	-

67.	Anil Kumar, A. Henglein and H. Weller Photochemistry and radiation chemistry of semiconductor colloids - preparation of colloidal PbO ₂ and various electron transfer processes. J. Phys. Chem. 93, 2262-2266 (1989).	NA	ACS Journal (Old)
68.	Anil Kumar, E. Janata and A. Henglein Photochemistry of colloidal semiconductors - quenching of CdS fluorescence by excess positive holes. J. Phys. Chem. 92, 2587-2591 (1988).	NA	ACS Journal (Old)
69.	A. Henglein, Anil Kumar , E. Janata and H. Weller Photochemistry and radiation chemistry of semiconductor colloids - reaction of the hydrated electron with CdS and non-linear optical effects. Chem. Phys. Lett. 132, 133-136 (1986).	Q2 (0.51)	2.31

(E). Patents: Patent granted: 02; Patents filed - 01

S.No.	Title
(i).	Anil Kumar and Sahil Thareja A Method for Synthesis of Nitrogen-Doped Reduced Graphene Oxide (N-rGO) for High Performance Supercapacitor
	Granted - Indian patent No. 391742 on 11th March 2022 (application No.201811031021)
(ii).	Himanshu Joshi, Anil Kumar , Ajay Kumar Synthesis of iron oxide nanohybrids (maghemite phase) employing raw spent wash from distillery industry as a precursor material."
	Granted - Indian Patent No. 340010 on 30th June 2020.
(iii).	Atul Kumar, Anil Kumar and G.D. Varma An Ultrafast Resistive Type Humidity Sensor Based on Nanohybrids Filing of Complete Specification (Indian Patent application no. 202011007304 dated. 20/02/2020)/Published on 11 th June 2021.

(F). Sponsored Research Projects: 8 Nos. as P.I. + 1 Departmental Project at S.No. 7, worked as P.I. in one of the areas. Handled, Contributed & Defended one of the Identified Thrust Area in this Project; Total Projects = 9

S.	Title	Sponsoring	Amount	Duration	Completed	Co-P.I if
No.		Agency	(in		/Ongoing	any
			Lakh)			
1	Synthesis of	CSIR, New	~17.0	July, 2014	Completed	None
	Biotemplated Colloidal	Delhi	(Receipt	to	in 2018	
	Nano-structures of Iron		15.5)	July, 2017	(Report	
	Oxide(s) - Analysis of			(Note:	submitted	
	Correlation between			Last	2019)	

	d · M 1 1 · 1			1	I	
	their Morphologies and			instalment		
	Properties			received in		
				2018)		
2	Synthesis of	CSIR, New	14.2	August,	Completed	None
	Nanohybrids of	Delhi		2008-		
	Colloidal			August,		
	Semiconductor Oxides			2011 (3		
	– An Analysis of their			Years)		
	Charge Dynamics,					
	Electronic and					
	Magnetic Properties					
3	Synthesis and	DST	15.8	Nov.,	Completed	None
	Photochemistry of	(Nanomissio		2004-	1	
	Composite Metal	n), New		March,		
	Semiconductor	Delhi		2008		
	Nanostructured	Denn		2000		
	Materials					
4	Analysis of Electronic	DST, New	21.0	August,	Completed	None
'	Properties of	Delhi	21.0	2001-	Completed	Tione
	Nanoclusters of	Delini		August,		
	Semiconductors –			2005		
	Development of			2003		
	Semiconductor Based					
	Integrated Based					
	Photocatalytic Systems					
5	Coupled Semicond-	DST, New	14.5	June, 1995	Completed	None
3	1	Delhi	14.3	– March,	Completed	None
	uctors as Catalysts for	Deim		2000		
	Initiating			2000		
	Photochemical					
	Reactions -					
	Mechanistic					
	Investigations of their					
	Photochemical and					
	Photophysical					
	Behaviour	~~~		1007 :		
6	Preparation of Silver	CSIR, New	4.6	1995-1998	Completed	Dr. P. Rama-
	(III) Species and its	Delhi		(3 Years)		murthy, Univ.
	Stable Complexes-A					of Madras
	Kinetic Investigation					
	of their Redox and					
	Photoredox Reactivity					
7	Photo- and Radiation	DRS (UGC)	35.0 (a	1995-1999	Completed	Handled &
	Induced Chemical		part of			contributed
	Reactions		the funds			work in this

	(one of the identified		were			thrust area as
	thrust areas)		allotted			PI
			for this			
			work)			
8	Optimization of	UGC, New	0.25	1993	Completed	None
	photophysics of	Delhi, 1993				
	Nanosized	(Granted by				
	Semiconductor for	Univ. of				
	their Application as	Roorkee)				
	Chemical Sensors					
9	Catalytic Action of	DST, New	9.9	Feb., 1989-	Completed	None
	Semiconductor	Delhi		March,		
	Microelectrodes in			1994		
	Photionduced					
	Chemical Reactions					

(G). Book Chapters Contributed – 02:

S.No.	Title of Book Chapter with Reference
(i).	V. Kumar and Anil Kumar, RNA-Mediated CdS-Based Nanostructures Luc
	Ponchon (ed.), RNA Scaffolds: Methods and Protocols, Methods in Molecular
	Biology, Springer Science+Business Media, New York Ch. 16, vol. 1316, P. 195-
	210 (2015).
(ii).	S.P. Srivastava and Anil Kumar, Kinetics and mechanism of Ag ⁺ - catalysed
	oxidation of diols with terminal hydroxyl groups by peroxydisulphate ion, M.
	Tsutsui (ed.), Fundamental Research in Homogeneous Catalysis, Plenum Publishing
	Co., New York, Vol. 3, 373-396 (1979).

(H). Details of Ph.D. Theses Supervised: Completed (22) + In progress (02). During last 3 years Ph.D. awarded (04)

S.No.	Name of	Title of Ph.D. Thesis			
	Student/Supervisor				
	Year of Award				
	/Submitted				
1.	Dr. Sahil Thareja	"Synthesis of N-Doped Reduced Graphene Oxide			
	Supervisor: Dr. Anil	and its Nanohybrids as Electrode Material(S)			
	Kumar 2021-2022	for Electrochemical Applications - An			
	(Ph.D. awarded in 2021)	Analysis of the Role of Different Aqueous			
		Electrolytes on their Supercapacitive			
		Performance"			
2.	Dr. Priyanka	"Synthesis of Multistimulus-Responsive Cytidine-5'-			
	Supervisor: Dr. Anil	Monophosphate Molecule - Mediated Smart			
	Kumar 2020-2021	Supramolecular Nanohybrid Hydrogels - Their			
	(Ph.D. awarded in 2020)	Multifunctional Features and Applications"			

3.	Dr. Komal Gupta	"Study of RNA-Mediated Fluorescing Colloidal CdSe
	Supervisor: Dr. Anil	Nanostructures – Enhanced Photophysics and
	Kumar 2019-2020	Morphological Transformation Induced By
	(Ph.D. awarded in 2019)	Conformational Change in RNA"
	(======================================	
4.	Dr. Ajay Kumar	"Arsenic Removal in Groundwater using Engineered
	Supervisor: Dr.	Maghemite (γ-Fe ₂ O ₃) Nanoparticles"
	Himanshu Joshi & Dr.	
	Anil Kumar 2018-2019	
	(Ph.D. awarded in 2019)	
5.	Dr. Mandeep Kaloti	"Synthesis and Multifunctional Applications of
	Supervisor: Dr. Anil	Biomolecule-Mediated Ag-γFe ₂ O ₃ Nanocomposites"
	Kumar and Dr. N.	
	Navani (2018)	
6.	Dr. Mahima Khandelwal	"Study on Chemical Reduction of Graphene Oxide into
	Supervisor: Dr. Anil	Graphene – their Physicochemical Behavior"
	Kumar and Dr. R. Nath	
	(2017-18)	
7.	Dr. Umesh Kumar Gaur	"Synthesis of Pure and Doped CuO Nanostructures and
	Supervisor: Dr. G.D.	their Multifunctional Properties"
	Varma and Dr. Anil	1
	Kumar (2017-18)	
8.	Dr. Sudhir Kumar Gupta	"Synthesis and Physicochemical Properties of
	Supervisor: Dr. Anil	Biotemplated β-FeOOH Nanostructures"
	Kumar (2015-16)	
9.	Dr. Bhupender Singh	"Synthesis and Photophysics of RNA-Mediated
	Supervisor: Dr. Anil	Colloidal PbSe Nanostructures"
	Kumar (2014-15)	
10.	Dr. Aditi Singhal	"Synthesis of β – Fe ₂ O ₃ Based Nanostructures - Study of
	Supervisor: Dr. Anil	their optical and Magnetic Properties"
	Kumar (2010-2011)	
11.	Dr. Vinit Kumar	"Synthesis, Optical and Electronic Properties of RNA –
11.	Supervisor: Dr. Anil	Mediated Colloidal CdS Nanostructures"
	Kumar (2010-2011)	Michaela Colloidal CdS Nanostructures
	1xumai (2010-2011)	
12.	Dr. Vidhi Chaudhary	"Synthesis of Ag/CdS Nanocomposites-An Analysis of
	Supervisor: Dr. Anil	their Optical and Photophysical Behavior"
	Kumar (2009-2010)	

13.	Dr. Anshuman Jakhmola Supervisor: Dr. Anil Kumar (2007-2008)	"Synthesis and Phtophysics of Q-PbS Based Colloidal Nanostructures"
14.	Dr. Nupur Mathur Supervisor: Dr. Anil Kumar (2005-2006)	"Photocatalytic Action of Certain Anilines Mediated by Aqueous TiO ₂ Suspensions"
15.	Dr. Shipra Mital Supervisor: Dr. Anil Kumar (2003-2004)	"Synthesis, Photophysics and Photocatalytic Action of Surface-Capped Q-CdS Particles"
16.	Dr. Priyanka Gupta Supervisor: Dr. R. N. Goyal and Dr. Anil Kumar (2001-2002)	"Oxidation Chemistry of Some Biologically Important N-Heterocyclic Compounds"
17.	Dr. Vaishali Supervisor: Dr. Anil Kumar (2001-2002)	"Kinetics of Oxidation of Some Amines, Aminoalcohols and diols by Diperiodatoargentate (III)"
18.	Dr. Arvind Kumar Jain Supervisor: Dr. Anil Kumar (2001-2002)	"Photophysics and Photocatalytic Behavior of Q-CdS-TiO ₂ in the Presence of Certain Aromatics"
19.	Dr. Devendra Pal Singh Negi Supervisor: Dr. Anil Kumar (2000-2001)	"Photophysical and Photocatalytic Behaviors of Q-CdS in the Presence of Some Heterocycles"
20.	Dr. Paresh Kumar Supervisor: Dr. Anil Kumar and Dr. R.D. Kaushik (1998-1999)	"Kinetics and Mechanism of Oxidation of Certain Amino Acids by Bis (periodato) Argentate (III)"
21.	Dr. Sanjay Kumar Supervisor: Dr. Anil Kumar (1995-1996)	"Photoluminescence of Colloidal Cadmium Sulphide Particles in the Presence of Certain Anilines and Indoles – Study of CdS Sensitized Photocatalytic Reactions"

22.	Dr. Ashok Panwar	"Preparation of Tetrahydroxoargentate (III) ion and
	Supervisor: Dr. Anil	Study of its Reactions with Certain Aromatic Amines"
	Kumar	
	(1993-1994)	
	(======================================	

(I). Book Chapters Contributed – 02:

S.No.	Title of Book Chapter with Reference
(i).	V. Kumar and Anil Kumar
	RNA-Mediated CdS-Based Nanostructures Luc Ponchon (ed.), RNA
	Scaffolds: Methods and Protocols, Methods in Molecular Biology,
	Springer Science+Business Media, New York Ch. 16, vol. 1316, P.
	195-210 (2015).
(ii).	S.P. Srivastava and Anil Kumar, Kinetics and mechanism of Ag ⁺ -
	catalysed oxidation of diols with terminal hydroxyl groups by
	peroxydisulphate ion, M. Tsutsui (ed.), Fundamental Research in
	Homogeneous Catalysis, Plenum Publishing Co., New York, Vol. 3, 373-
	396 (1979).

(J). Conferences: Proceedings 03 (S. Nos. 32, 42 & 66) + 88 (Abstracted)/Invited Talks/Symp./Meetings. Total = 92; Last 03 Years -14 Nos.

S.	Author(s)	Title	Name of	Page	Date &	Conference
No.			Conference/	No.	Year	Venue
			Meeting	(Other		
				Details)		
1.	<u>Ikrar</u>	Synthesis of	35 th	-	March	Berlin,
	<u>Ahmad</u>	Cytidine	International		25-26,	Germany
	and Anil	Monophosphate-	Conf. on		2022	Held
	Kumar	Assisted Reduced Graphene Oxide (N, P-rGO) as Electrode Material for Supercapacitor Applications	Nanomaterials and Nanotech- nology			Virtually
2.	Anil	Nanotechnology	National	Invited	26 th	GGNK
	Kumar	Revolutionizing	Webinar on	Talk as	Oct.	College,
		Societal	Advancement in	a	2021	Ludhiana,
		Applications	Modern	Resourc		Held
			Experimental	e Person		Virtually
			Chemistry			

3.	Anil Kumar	Fabrication of Sustainable	International Conference on	Invited Talk	29 th to 30 th	Galgotias Univ.,
		Advanced Greener Nanomaterials Employing Wet Chemical Approach	Advanced Materials for Next Generation Applications		Sept., 2021	Noida Held Virtually
4.	S. Thareja and Anil Kumar	One-pot Greener Synthesis of N- doped Reduced Graphene Oxide for High Performance Symmetric Supercapacitor - An Analysis of the Role of Different Electrolytes for Achieving High Electrochemical Potential Window	International Conference on Advanced Materials for Better Tomorrow	Oral	13-17 July, 2021	IIT (BHU) Held Virtually
5.	S. Thareja and Anil Kumar	Synergistic Effect of Electrode Material and Electrolyte for Developing High Cell Voltage Aqueous Symmetric Supercapacitor	International Conference on Recent Advances in Chemical Sciences (ICRACS2021)	Oral	14-16 July, 2021.	Depart. of Chemistry, JC Bose University of Science and Technol., YMCA, Faridabad
6.	A. Kumar, G.D. Varma, and Anil Kumar	Reduced graphene oxide/Magnetite (rGO-Fe ₃ O ₄) nanohybrids based selective room temperature H ₂ S gas sensor	American Physical Society (APS) March Meeting 2021	Poster	March 15–19, 2021	Held Virtually
7.	Anil Kumar	Greener Protocols for the Fabrication of Biotemplated Nanostructures - their Multifunctional Applications	Continuing Education Programme on 'Environment and Nanosafety'	Invited Talk	17th to 19th Feb 2020	DRDO, Delhi

8.	Sahil Thareja	High Performance Symmetric	DAE-BRNS sponsored	PP-161	21-25 Jan.,	BARC, Mumbai
	and Anil	Supercapacitor	conference on		2020	1414111041
	Kumar	based on Nitrogen	Electrochemistr			
		doped Reduced	y in Industry,			
		Graphene Oxide	Health and Environment-			
			2020			
9.	Anil	Environmentally	National	Invited	10 th	CSIR-
	Kumar	Benign Greener	Academies Lecture	Talk	Jan.,	CSIO,
		Nanostructures for Certain	Workshop on "		2020	Chandigarh
		Energy	Materials			
		Applications	Engineering for Sustainable			
			Environment			
10	Anil	Engineering of	and Energy" National	Invited	9 th	CSIR-
10	Kumar	Nanostructured	Academies	Talk	Jan.,	CSIC-
		Materials for	lecture		2020	Chandigarh
		Some Light -	Workshop on " Materials			
		Induced Energy	Engineering for			
		Applications	Sustainable			
			Environment and Energy"			
11	S. Thareja	Synthesis and	International	Poster	8-10	C-MET,
	and Anil	characterization of nitrogen doped	Conference on		March,	Thrissur,
	Kumar	reduced graphene	Supercapacitor, Energy Storage		2019	Kerala
		oxide as high-	& Application		2019	
		performance binder-free	(ICSEA 2019)			
		supercapacitor	,			
12	A V	electrode material Selective	3 rd International	Poster	Oat	Coxxt
12	A. Kumar, G.D.	Enhanced H ₂ S	Conf. on	roster	Oct. 14-15,	Govt. Engineering
	Varma,	Sensing Using	Condensed		2019	College
	and Anil	Rgo-Fe ₃ O ₄	Matter & Amp;			Bikaner,
	Kumar	Nanohybrids	Applied Physics-2019			Rajasthan
13	Anil	Photophysics of	National Conf.	IL-7	20-21	Jamia Milia
	Kumar	Nucleic acid- Mediated	on Advanced		Nov.,	Islamia,
		Semiconducting	Functional		2019	New Delhi
		Nanostructures				

			Materials (NCAFM-2019)			
14	Anil Kumar	Photophysics of Nucleic acid- Mediated Semiconducting Nanostructures	National Workshop on Photouminescence and functional Materials (NWPFM- 2019)	-	20-21 June, 2019	Univ. of Madras, India
15	Priyanka and Anil Kumar	Environmental Applications of Nucleotide Molecule(s) Coated Greener Hydrogels	Internat. Conf. on Advanced Mater., Energy and Environmental Sustainability	Abst. 173	Dec. 14-15, 2018	Univ. of Petroleum and Energy Studies, Dehradun, India
16.	Priyanka and Anil Kumar	Synthesis and Analysis of Physiochemical Properties of Biomolecule- Mediated Soft Hydrogels	12th Int. Conf. on Complex Fluids and Soft Matter Sponsored by RSC & ACS	Abstract 48 (Poster No. 7)	Dec. 6- 9, 2018	LHC, IIT Roorkee, India
17.	A. Kumar, H. Joshi, and Anil Kumar	An approach of utilizing the industry waste in the development of maghemite functionalized nanostructures for arsenic removal'	Water Security and Climate Change Conference, (International Network on Sustainable Water Management in Developing Countries (SWINDON))	151	3 rd to 5 th Dec., 2018	Nairobi, Kenya
18.	A. Kumar, H. Joshi, and Anil Kumar	Exploring the scope of nanoparticles for arsenic removal in groundwater	7th Int. Congress on Arsenic in the Environment (As2018)	ISBN 978113 84860- 96 (In Press)	1 st to 6 th July, 2018 (CRC	Beijing, China

			Organized by		Press	
			Int. Soc. of		Publis-	
			Groundwater		her)	
			for Sustainable		,	
			Development			
19.	Anil	Biomolecules	National Conf.	1	January	Dept. of
	Kumar	Mediated Greener	on Chemical		18-21,	Chemistry,
	(Keynote	Nanostructures/	Sciences: An		2018	Modern
	Speaker –	Nanohybrids:	Interdiscipli-			College of
	Inaugural	Study of their	nary Approach			Arts,
	Lecture)	Multifunctional	(CSIA-2018)			Science and
		Features				Commerce,
						Pune
						(Sponsored
						by Dept. of
						Biotechnol-
						ogy)
20.	Komal	Multifunctional	ACS on	-	07 th	IIT
	Gupta and	Features of RNA	Campus IIT		Feb.,	Roorkee,
	Anil	Mediated CdSe	Roorkee		2018	Roorkee
	Kumar	Nanostructures				
21.	Komal	Mechanistic	Trombay	90	03 rd -	BARC,
	Gupta and	Analysis of	Symposium on		07 th	Mumbai
	Anil	Fluorescence	Radiation &		Jan.,	
	Kumar	Behavior of	Photochemis-		2018	
		RNA-Mediated	try (TSRP-			
		Colloidal CdSe	2018)			
		Nanostructures				
		For Hg ²⁺ Sensing				
22.	A. Kumar,	Assessing the	7 th International	130	11 th -	NIH and
	H. Joshi,	maghemite (γ-	Groundwater	(ISBN:	13 th	CGWB at
	and Anil	Fe_2O_3	Conference-	978-93-	Dec.	New Delhi,
	Kumar	nanoparticles in	Groundwater	81891-	2017	India from
		As(V) removal	Vision 2030	42-1)		
		using laboratory				
		scale batch and				
		column				
		experiments				
23.	Komal	RNA-mediated	International	152	30	Dept. of
	Gupta and	Fluorescent Water	Conf. on		Nov	Metallurgi-
		Soluble Colloidal	Advances in			cal &

	Anil	CdSe	Materials &		2 Dec.,	Materials
	Kumar	Nanostructures	Processing:		2017	Engg., IIT
		for Environmental	Challenges &			Roorkee,
		Applications	Opportunities			India
			(AMPCO-2017)			
24.	<u>Komal</u>	Photophysical	International	102	March	Dept. of
	Gupta,	Behavior Of	Conf. on	(PP-52)	4-7,	Chemistry,
	Bhupender	Zn2+/PbSe	Advanced		2016	IIT
	Singh and	Nanostructures in	Materials for			Roorkee,
	Anil	the presence of	Energy,			Roorkee
	Kumar	Nile Blue:	Environment			
		An Analysis of its	and Health			
		sorption Behavior	(ICAM-2016)			
25.	Anil	Development of	9 th Natl.	16	Feb.	Dept. of
	Kumar	Advanced	Seminar on	(Invited	09-10,	Chemistry,
		Nanomaterials	New Paradigm	Lecture-	2017	Punjabi
		using Wet	in Chemical	08)		University,
		Chemical	Sciences and			Patiala
		Approach	Analytical			
			Perspectives			
26.	Anil	Synthesis and	Prof. R.C. Paul	Invited	Feb.	Dept. of
	Kumar	multifunctional	Natl.	Lecture	24-25,	Chemistry,
		behavior of some	Symposium on		2017	Chandigarh
		iron oxide and	Current			University,
		carbon-based	Advances in			Chandigarh
		greener	Chemical			
		nanostructures	Sciences			
27.	M. Kaloti	Synthesis and	Int. Conf. on	317	Nov. 4-	Centre of
	and Anil	multifunctional	Advances in	(Poster -	5, 2016	Nanosci. &
	Kumar	applications of	Nanomaterials	308)		Nanotech.,
		chitosan mediated	and			Jamia
		maghemite	Nanotechnol-			Millia
		nanohybrids	ogy (ICANN-			Islamia,
			2016)			New Delhi
28.	<u>M.</u>	Synthesis of	International	70	March	Dept. of
	<u>Khandel-</u>	graphene by	Conf. on	(YRP-	4-7,	Chemistry,
	<u>wal</u> and	chemical	Advanced	3)	2016	IIT
	Anil	reduction of	Materials for			Roorkee,
	Kumar	graphene oxide –	Energy,			Roorkee
		Study of their	Environment			

		energy storage applications	and Health (ICAM-2016)			
29.	M.Kaloti, Anil Kumar and N. Navani	Synthesis of glucose-mediated Ag-γ-Fe ₂ O ₃ multif-unctional nanocomposites – a study of their catalytic and antibacterial studies	International Conf. on Advanced Materials for Energy, Environment and Health (ICAM-2016)	127 (PP-52)	March 4-7, 2016	Dept. of Chemistry, IIT Roorkee, Roorkee
30.	M. Khandel- wal and Anil Kumar	Amino acid mediated synthesis of N- doped graphene and its supercapacitor applications	Int. Conf. on Materials Science & Technology, Conf. Centre	100 (Biomater. Biodev./	1- 4 March, 2016	Univ. of Delhi, Delhi, India
31.	M. Khandel- wal and Anil Kumar	Environmental friendly synthesis of N-doped graphene-silver nanocomposites with enhanced optical and electrochemical behaviour,	Second Conference on Microscopy in Materials Science	28 (OP-9)	Feb. 25-27, 2016	Thapar University, Patiala
32.	Anil Kumar	Nanotechnology contributing to the development of advanced materials	Short Term Course on Advance Materials and Characterizatio n Techniques	Expert Talk	June 01, 2015	Dr B R Ambedkar National Institute of Technology , Jalandhar - 144011, Punjab
33.	M. Khandel- wal and Anil Kumar	Malonic acid mediated synthesis of one atom thick graphene sheets	5 th Int. Conf. on Recent Trends in Applied Physical	1167	May 2- 3, 2015 (J. Basic Appl.	"Krishi Sanskriti" at Jawaharlal Nehru

		and its	Chemical		Engg.	University,
		supercapacitor	Sciences,		Res.	New Delhi,
		applications in	,		2(13)	,
		Mathematical/Stat			2015)	
		istical and			(Poster	
		Environmental			(Poster	
		Dynamics")	
34.	Anil	Chemical	EMN	3 (A-	03 rd -	Guangzhou,
	Kumar	Strategies for	Guangzhou	02)	06 th	China
		Synthesis of	Meeting 2015–	,	Dec.,	
		Green	Energy		2015	
		Nanomaterials –	Materials and			
		Chemistry and	Nanotechno-			
		Future Scope of				
		Iron Oxide/	logy (Delivered			
		Oxyhydoxide Based	an Invited Talk)			
		Nanostructures				
35.	Anil	Rheological	Int. Conf.	Presen-	Octobe	Indian
	Kumar	Properties of	Biomater. 2014	ted	r 27-	Institute of
	and <u>Sudhir</u>	Biocompatible	on Polymeric	poster	30,	Technology
	K. Gupta	Superparamagneti	Biomater.	Poster	2014	Delhi
	<u> 11. Gupuu</u>	c 5'-Guanosine	Bioengg. &		201.	(India),
		Monophosphate				ENEA
		Mediated Porous	Biodiagnostics			Rome
		Hydrogel of				(Italy) and
		β-FeOOH –				National
		Loading, and				Research
		Release				Council
		Capabilities of Its				(Italy)
		Freeze-Dried Gel				(Italy)
26	~ II ~ ~		Oth T 1' T	(33.7		
36.	Sudhir K.	Viscoelastic	9 th India Japan	(Won	Oct.	Biyani
	Gupta and	Properties of	Bilateral	best	12-13,	Group of
	Anil	Superparamagneti	Conference	poster	2014.	Colleges,
	Kumar	c 5'-Adenosine	(BICON-2014)	award		Jaipur,
		Monophosphate	on Advanced	by S.K.		Rajasthan
		Mediated Porous	Material Sci.	Gupta)		(India) and
		β–FеООН	Engg.			JAIST
		Hydrogel – its				Japan
		Loading, and				
		Release				
		Capabilities				
		_				

37.	Anil Kumar (Plenary Lecture 2)	"Synthesis of Advanced Materials following Wet Chemical Route(s)"	9 th India Japan Bilateral Conference (BICON-2014) on Adv. Mater. Sci. Engg.	25-27	Oct. 12-13, 2014	Biyani Group of Colleges, Jaipur, Rajasthan (India) and JAIST Japan
38.	Anil Kumar (Invited Lecture)	Current Advancements in Nanoscience Present Status and Future Prospects of Sustainable Green Technology	Green Nanotechno- logy	Published in Proceedings	June 05-06, 2014	Chandigarh University, Chandigarh
39.	Anil Kumar and S.K. Gupta	Synthesis, Characterization and Magnetic Properties of 5'- Guanosine Monophosphate Mediated Porous Hydrogel containing β- FeOOH Nanostructures	National Conference on Nanotechnolog y and Renewable Energy-2014 (NCNRE-2014)	241	April 28-29, 2014	Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi
40.	Anil Kumar	Chemical Approach to Design New Material	Natl. Conf. Science Colloquium (Emerging Trends in Basic & Applied Sciences)	2 (Invited Talk)	6- 7 th March, 2014	DAV College Jalandhar
41.	Anil Kumar	Chemical Sciences Contributing to the Development of New Materials	Nat. Conf. on Recent Trends in Chemical Sciences	8 (IT-5)	25-26, Feb., 2014	Dept. of Chemistry, Guru Jambhesh- war Univ. of Sci &

						Tech., Hisar
42.	Anil Kumar	Emphasis on Interdisciplinary Science & Technological Shift, Contributing to the Development of New Materials	2 nd Int. Conf. and Exhibition on Materials Science and Engineering	Honor- able Guest Lecture	07 th -9 th Octobe r 2013 (07 th Oct.)	Las Vegas, USA
43.	Anil Kumar (Invited Lecture)	'Biotemplated Semiconductor/ Metal Nanostructures - their Characteristic Features and Future Prospects'	2 nd International Conference and Exhibition on Materials Science and Engineering	Invited Talk	08 th Oct. 2013	Las Vegas, USA
44.	Anil Kumar	Supramolecular Directed Assemblies of Biotemplated Metal / Semiconductor Nanohybrids	5 th Szeged International Workshop on Advances in Nanoscience (SIWAN5)	81-82	24-27 Oct., 2012	Szeged, Hungary,
45.	Kanchan Yadav, N. Bogdan, R. Naccac he, B. F. Zhang, E. M. Rodriguez, Anil Kumar and J. A. Capobian- co	Synthesis of Upconverting NaGdF4 Nanocrystals Doped with Tm³+ and Yb³+ and its functionalization with Tumour Imaging and Treatment'	'World Congress on Biotechnolo-gy	Won 02 nd Best Poster Presenta tion Prize	04 th to 06 th May 2012	Leonia Int. Convention Centre, Hyderabad
46.	Anil Kumar	Development of Colloidal Nanomaterials	7 th Natl. Symp. & Conf. on Solid State	39 (IL4)	Nov. 24 –	Dept. of Chemistry, Faculty of

	(Invited		Chem. And		26,	Natural Sci.
	Lecture)		Allied Areas		2011	Jamia
	Ecciuic)		(ISCAS -2011)		2011	Millia
			(ISCAS -2011)			Islamia,
						New Delhi
47.	Linu, M.	Synthesis of γ –	Third Intl.	_	August	Cochin
7/.	and Anil	Fe ₂ O ₃ Based	Conf. on	_	2011	Nano -
	Kumar	Nanostructures –	Frontiers in		2011	2011
	Kumar	Study of their	Nanoscience			2011
		Optical and	and Technology			
		Magnetic				
40	A *1	Properties	3rd v . D .c.	207	G 4	т 1
48.	Anil	Optical and	3 rd Asia Pacific	206 –	Sept.	Lonavala,
	Kumar	Electronic	Symp. On Rad.	209	14 -17,	India
	(Invited	Properties of	Chem.	(Invited	2010	
	Lecture)	Colloidal	(APSRC-2010)	Talk		
		Semiconductor	and DAR	ITPC-		
		Nanohybrids	BRNS 10 th	13)		
			Biennial	(Publis-		
			Trombay Symp.	hed in		
			Rad. &	Proc.)		
			Photochem.			
			(TSRP-2010)			
49.	Anil	Photocatalytic	International	'Cataly-	Nov.	Allahabad
	Kumar	Applications of	Symposium on	sis in	03 –	Agricultural
	(Chaired a	Some	Ostwald's 100	Green	04,	Institute,
	Session on	Semiconductor	Years of	Chemi-	2009	Allahabad
	'Applicati	Nanosystems.	Catalysis in	stry/		
	ons of		Chemical	Nano-		
	Catalysts		Research	materi-		
	in			als'		
	Industry)					
50.	Anil	Biomolecule(s) -	Indo-French	87 in	October	Ansal
	Kumar	Templated	Workshop cum	(Int.	12-16,	Institue of
	(Plenary	Colloidal Metal	International	Conf. on	2009	Technology,
	Lecture)	/Semiconductor	Conference on	16 th		Gurgaon
		Nanohybrids,	Nanosci. & Nanotechnol.	Oct.)		
51.	Anil	Morphological	Intl. Conf. on	77	Dec.	IIT
	Kumar	Changes in	Nanomaterials		11-13,	Roorkee,
		Nucleotide-	and Devices		2008	India
<u> </u>		1	_ = 0:1038	l		<u> </u>

	and V.	Capped CdS	Processing and			
	Kumar	Nanostructures	Applications			
			(NADPA 2008)			
52.	Anil	Electronic	Intl. Conf. on	77	Dec.	IIT
	Kumar	Properties of	Nanomaterials		11-13,	Roorkee,
	and <u><i>V</i>.</u>	Biotemplated Q-	and Devices		2008	India
	Chaudha-	CdS-Ag	Processing and			
	<u>ry</u>	Nanocomposites,	Applications			
			(NADPA 2008)			
53.	Anil	Synthesis of	Intl. Conf. on	76	Dec.	IIT
	Kumar	Fe ₂ O ₃ /Ag Core	Nanomaterials		11-13,	Roorkee,
	and <u>Aditi</u>	Shell	and Devices		2008	India
	<u>Singhal</u>	Nanocomposites,	Processing and			
			Applications			
			(NADPA 2008)			
54.	Anil	Nanoscience and	National	Chaired	Nov. 8	HNB
	Kumar	Nanotechnology –	Convention of	a	& 9,	Garhwal
	(Invited	Potential &	Chemistry	Techn-	2008	University,
	Lecture)	Challenges	Teachers	ical		Srinagar
			(NCCT -2008)	Session		
55.	Anil	Synthesis and	International	A105	Feb.	Indira
	Kumar,	photophysics of	Conf. on		27- 29,	Gandhi
	A.	ZnS/PbS/ZnS	Nanoscience		2008	Centre for
	Jakhmola	quantum dot	and Technology			Atomic
	and <u><i>V</i>.</u>	quantum well –	(ICONSAT-			Research,
		1 *				<u> </u>
1	Chaudha-	An analysis of	2008)			DAE,
	Chaudha- ry	An analysis of dynamics of	2008)			DAE, Kalpakkam,
	ry	An analysis of dynamics of charge carriers	,			DAE, Kalpakkam, India
56.	ry Anil	An analysis of dynamics of charge carriers Photochemistry of	National	IT-2	Jan. 29	DAE, Kalpakkam, India Univ. of
56.	Anil Kumar	An analysis of dynamics of charge carriers Photochemistry of Some	National Symposium on	IT-2	-31	DAE, Kalpakkam, India Univ. of Madras,
56.	Anil Kumar (Invited	An analysis of dynamics of charge carriers Photochemistry of	National Symposium on Radiation and	IT-2		DAE, Kalpakkam, India Univ. of
56.	Anil Kumar	An analysis of dynamics of charge carriers Photochemistry of Some	National Symposium on Radiation and Photochemi-	IT-2	-31	DAE, Kalpakkam, India Univ. of Madras,
56.	Anil Kumar (Invited	An analysis of dynamics of charge carriers Photochemistry of Some	National Symposium on Radiation and Photochemistry (NSRP-	IT-2	-31	DAE, Kalpakkam, India Univ. of Madras,
	Anil Kumar (Invited Lecture)	An analysis of dynamics of charge carriers Photochemistry of Some Nanocolloids	National Symposium on Radiation and Photochemistry (NSRP- 2007)		-31 (2007)	DAE, Kalpakkam, India Univ. of Madras, Chennai
56.	Anil Kumar (Invited Lecture)	An analysis of dynamics of charge carriers Photochemistry of Some Nanocolloids Photochemistry of	National Symposium on Radiation and Photochemistry (NSRP- 2007) National	IT-2	- 31 (2007)	DAE, Kalpakkam, India Univ. of Madras, Chennai
	Anil Kumar (Invited Lecture)	An analysis of dynamics of charge carriers Photochemistry of Some Nanocolloids Photochemistry of Surface Modified	National Symposium on Radiation and Photochemistry (NSRP- 2007) National Symposium on		-31 (2007) January 29 - 31	DAE, Kalpakkam, India Univ. of Madras, Chennai Univ. of Madras,
	Anil Kumar (Invited Lecture)	An analysis of dynamics of charge carriers Photochemistry of Some Nanocolloids Photochemistry of Surface Modified Semiconductor	National Symposium on Radiation and Photochemistry (NSRP- 2007) National Symposium on Radiation and		- 31 (2007)	DAE, Kalpakkam, India Univ. of Madras, Chennai
	Anil Kumar (Invited Lecture)	An analysis of dynamics of charge carriers Photochemistry of Some Nanocolloids Photochemistry of Surface Modified	National Symposium on Radiation and Photochemistry (NSRP- 2007) National Symposium on		-31 (2007) January 29 - 31	DAE, Kalpakkam, India Univ. of Madras, Chennai Univ. of Madras,

58.	Anil	Photocatalytic	Intl- Meeting of	Oral	March	Agadir,
56.	Kumar	Decomposition of	Photochem-	Presenta	29-31,	Morocco
	and N.	Anilines at the	istry,	tion	2006	Wiorocco
	Mathur	Interface of	Photocatalysis	tion	2000	
	Wiatiful	Surface Modified	and their			
		TiO ₂ –	Environment-al			
		Influence of				
		Loading of	Applications (Photocat 2006)			
		Carbonate Ions	(Pilotocat 2000)			
59.	Anil		Warkshan on	Invited	June	Poona
39.	Kumar	Applications of Pulse Radiolysis	Workshop on Pulse			
		to Photochemistry		Presen- tation	25, 2005.	Univ., Pune
	(Invited	- An	Radiolysis and	tation	2003.	
	Lecture)	understanding of	its Applications			
		Semiconductor				
		Based				
		Photochemical Systems				
60.	Anil	Photooxidation of	UGC sponsored	25	Oct. 18,	IIT
	Kumar	Aniline at the	symposium		2003	Roorkee,
	and <u>N.</u>	Interface of TiO ₂	under DRS			Roorkee,
	<u>Mathur</u>	Suspensions	*****		0 10	****
61.	Anil	Photochemistry	UGC sponsored	24	Oct. 18,	IIT
	Kumar	of 6-	symposium		2003	Roorkee,
	and <u>S.</u>	Dimethylaminopu	under DRS			Roorkee,
	<u>Mital</u>	rine-capped				
		Cadmium Sulfide				
62.	Anil	Nanoparticles Photochemistry of	National	IT-8	March	HT Kannur
02.		Surface Modified		11-0		IIT, Kanpur
	Kumar		Symposium on Radiation and		3-5,	
		Semiconductor			2003	
		Nanocomposites	Photochemistry			
63.	Anil	Dhotophysical and	(NSRP-2003) 7 th Intl. Conf. on	Oral	23-28 th	Luxor
03.	Ann Kumar	Photophysical and Photochemical		Presenta	Feb.,	
	Aumar	Aspects of	Solar Energy and Applied	tion	2003	Egypt
		Nanoparticles of	Photochemis-	made	2003	
		Semiconductors –		under		
			try (Solar'03) combined with			
		Investigations on Q-CdS		Special Session		
		Q-Cus				
			Workshop on	on Nano		
			Environ.	Nano-		

64.	Anil	Photophysics and	Photochemistry (Enpho '03) Workshop on	sci- & Nanot- echnol- ogy	January	Pune
04.	Kumar and Arvind Kumar Jain	Photocatalytic Properties of Sandwich Q-CdS- TiO ₂ Semiconductors	Radiation and Photochemistry	21	January 4-5, 2002	University
65.	Anil Kumar and S. Mital	Electronic Properties of Q-CdS Stabilized by Adenine.	ISRAPS Natl. Symp. on Rad. and Photo- chemistry	16	Feb. 21-23, 2001	Univ. of Roorkee, Roorkee
66.	Anil Kumar and A.K. Jain	Effect of doping of Ag + on the photophysics of mixed colloidal CdS - TiO ₂ system - correlation of photophysics with its photocatalytic activity	ISRAPS Natl. Symp. on Rad. and Photo- chemistry	15	Feb. 21-23, 2001	Univ. of Roorkee, Roorkee
67.	D.P.S. Negi and Anil Kumar	Photophysical and Photocatalytic Behaviour of Cd(OH) ₂ – Coated Q-CdS in the Presence of Certain Heterocycles.	ISRAPS Natl. Symp. on Rad. and Photo- chemistry	TH - 7	Feb. 21-23, 2001	Univ. of Roorkee, Roorkee
68.	R.N. Goyal, Anil Kumar and P. Gupta	Mechanisms of electrochemical and persulfate oxidation of tryptophol.	ISRAPS Natl. Symp. on Rad. and Photo- chemistry	K-4	Feb. 21-23, 2001	Univ. of Roorkee, Roorkee

69.	Anil	Kinetics of	ISRAPS Natl.	K-3	Feb.	Univ. of
	Kumar,	oxidation of 3-	Symp. on Rad.		21-23,	Roorkee,
	Vaishali	amino-1-propanol	and Photo-		2001	Roorkee
	and P.	and certain	chemistry			
	Ramamurt	diamines by silver				
	hy	(III).				
70.	Anil	Kinetics and	ISRAPS Natl.	K-2	Feb.	Univ. of
	Kumar, P.	Mechanism of	Symp. on Rad.		21-23,	Roorkee,
	Kumar and	Oxidation of	and Photo-		2001	Roorkee
	Vaishali	Ethylenediamine-	chemistry			
		tetracetic acid by				
		Diperiodato- argentate (III) ion				
71	Anil	` ` `	C	24 (1	T	DDI
71.	Kumar	Electronic Properties of	Symposium on Recent Trends	34 (L- 30)	January 8 – 10,	RRL, Trivandrum
	Kumai	Surface Modified	in	30)	$\begin{vmatrix} 3 - 10, \\ 2001 \end{vmatrix}$	Tiivaiidiuiii
		Q-CdS Particles –	Photochemic-al		2001	
		A Comparison of	Sciences,			
		their Photocotolytic	Serences,			
		Photocatalytic Activity with				
		Naked CdS				
		Clusters				
72.	Anil	Photophysical and	Trombay	38	Jan.	BARC,
	Kumar	photochemical	Symposium on	(Proce-	12-17,	Mumbai
		aspects of certain	Radiation and	edings,	2000	
		quantized coupled	Photochemis-	Part II,		
		semiconductors.	try	499-505		
				(2000).		
73.	Anil	Photophysics and	2 nd Asian	87	June 27	Taejon,
	Kumar,	Photochemistry of	Photochemis-		-30,	South
	D.P.S.	Cd(OH) ₂ -coated	try Conference		1999	Korea
	Negi and	Quantized CdS				
	Arvind	and colloidal CdS-				
	Kumar	TiO ₂				
	Jain	Semiconductors -				
		Study of Certain Redox Reactions				
		at their Interface				
74.	Anil	Kinetics and	Seminar on	43	March	Chennai
/ 4.	Kumar,	Mechanism of	Ultrafast	73	11-13,	Chemiai
1	ixumai,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Omarast		11-13,	
	Vaishali	Oxidation of	Processes in		1999	

	and P.	Ethylenediamine	Biology,			
	Ramamur-	and Related	Chemistry and			
	thy	Compounds by	Physics			
	lily	Diperiodato-	1 Hysics			
		argentate (III) ion				
75.	Anil	Photophysical	National	PC-7	Feb.	Sambalpur
75.	Kumar	Behaviour of Cd	Symposium on		15-17,	Samoarpar
	and <u>D.P.S.</u>	(OH) ₂ -coated	Radiation and		1999	
	Negi	CdS Particles in	Photochemistry		1777	
	<u>ivegi</u>	the Presence of dl-	1 notochemistry			
		Tryptophan-study				
		of CdS-initiated				
		Photocatalytic Reaction				
76.	Anil		Walsalaaaaa	48	Jan. 7-	DDI
/6.	Kumar	Photocatalysis Initiated by	Workshop on Recent trends in	48	Jan. /-	RRL, Trivandrum
	Kumar	,				Trivanarum
		Semiconductors -	Photochemical		(1998)	
		Mechanistic	Sciences			
		Analysis of				
		Colloidal CdS				
		Induced				
		Photochemical				
		Reactions of				
77	4 •7	Certain Organics	*** 1 1	0.1	> T	77 · C
77.	Anil	Investigation of	Workshop on	01	Nov.	Univ. of
	Kumar	Primary	National Centre		28,	Madras,
		Photophysical and	for Ultrafast		1997	Madras
		Photochemical	Processes			
		Events in				
		Irradiated				
		Quantized				
		Semiconductor				
70	A •1	Particles	D 4 T 1	70	G t	11
78.	Anil	Study of	Recent Trends	78	Sept.	Univ. of
	Kumar	photophysical and	in Instrumental		18-20,	Roorkee,
	and <u>D.P.S.</u>	photochemical	Methods of		1997	Roorkee
	<u>Negi</u>	behaviour of	Analysis			
		cadmium				
		hydroxide coated				
		cadmium sulphide				
		particles				

79.	Anil	Kinetics of	Recent Trends	69	Sept.	Univ. of
	Kumar,	Oxidation of	in Instrumental		18-20,	Roorkee,
	<u>Vaishali</u>	Ethylene glycol	Methods of		1997	Roorkee
	and P.	by Diperiodato-	Analysis,			
	Ramamurt	argentate (III) - a	Roorkee			
	hy	Comparison of				
		Thermal and				
		Photochemical				
		Reactions				
80.	Anil	Kinetics of	Recent Trends	68	Sept.	Univ. of
	Kumar	Oxidation of	in Instrumental		18-20,	Roorkee,
	and <u><i>P</i>.</u>	Nitrilotriacetic	Methods of		1997	Roorkee
	<u>Kumar</u>	acid by	Analysis,			
		Diperiodato-	Roorkee			
		argentate (III)				
81.	Anil	Photocatalysis	Asian	136	June	Hong Kong
	Kumar	Initiated by	Photochemis-		23-26,	
	and S.	Quantized CdS	try Conf.		1996	
	Kumar	Particles - a				
		Mechanistic				
0.2	. •	Investigation	DOM W. 1 1	12	·	7
82.	Anil	Study of Early	DST Workshop	13	Jan.	Poona
	Kumar	Events in	on National		19-20,	Univ., Pune
		Photochemical	Centre for		1995	
		Reactions Initiated by	Ultrafast			
		Initiated by Quantized	Processes			
		Semiconductor				
		Particles				
83.	Anil	Enchancement of	XVth IUPAC	325	July	Prague,
	Kumar	Luminescence of		323	17-22,	Czech
	and S.	CdS in the			1994	Republic
	Kumar	Presence of	try			1
		Indoles - Study of				
		CdS Sensitized				
		Reactions of				
		Indoles				

84.	Anil Kumar Anil Kumar	Photophysical and Photochemical Processes Initiated by Nanometer-sized Particles of Semiconductors Fast Kinetics Research in the Study of Nanoparticles	Trombay Symposium on Radiation and Photochemistry Discussion Meeting on Fast Chemical Reactions	Invited Talk	Jan. 17-21, 1994 July 30-31, 1993	BARC, Bombay Inter University Consortium for DAE Facilities, Indore
86.	Anil Kumar	Electron-transfer Reactions in Semiconductor Microelectrodes	Conference on Photochemis- try and Laser Chemistry	Oral Presentation	Dec. 19-21, 1990	RRL, Trivandrum
87.	Anil Kumar	Electron and Hole Injection of Colloidal CdS by means of Pulse Radiolysis	Mini- symposium held at	Oral Presentation (14 th May 1987)	May 13-15, 1987	Max- Planck- Institut, Mulheium/ Ruhr, West Germany
88.	Anil Kumar	Catalytic Action of Colloidal Microelectrodes in Photoinduced Chemical Reactions	National Seminar on Advances in Photochemistry and Applications	Oral Presentation	Feb., 1985.	Madras,
89.	Anil Kumar and P. Neta	Oxidation of Anilines by Ag (II) Ions	Indian Science Congress Association	Oral Presentation	Jan., 1983	Tirupati,
90.	S.P. Srivastava and Anil Kumar	Kinetics and Mechanism of Ag ⁺ - catalyzed Oxidation of Diols with Terminal Hydroxyl groups by	Indian Science Congress Association	Oral Presentation	Jan. (1978)	Ahemdabad

		Danayydigulahata				
		Peroxydisulphate				
		Ion				
91.	S.P.	Kinetics and	Convention of	Oral	Dec.	Bangalore
	Srivastava	Mechanism of	Chemists	Presen-	1976	
	and Anil	Ag ⁺ - Catalyzed		tation		
	Kumar	Oxidation of				
		Glycerol by				
		Peroxydisulphate				
		Ion - An Analysis				
		of Consecutive				
		Reactions				
92.	S.P.	Kinetics and	Convention of	Oral	Dec.	Univ. of
	Srivastava	Mechanism of	Chemists	Presen-	1975	Roorkee,
	and Anil	Ag ⁺ - Catalyzed		tation		Roorkee
	Kumar	Oxidation of				
		Glycerol by				
		Peroxydisulphate				
		Ion - A				
		Reinvestigation.				

(K). Complete List of Publications (98) in SCI Journals: (In descending order of publication) Total Papers in Peer Reviewed Journals 99

List	of Publication	98 (In descending	order of pu	ublication year)	
S. No.	Author(s)	Title	Journal	Vol., Page Nos.	Year
1	S. Thareja and Anil Kumar*	In-situ Wet Synthesis of N-ZnO/N-rGO Nanohybrids as Electrode Material for High Performance Supercapacitor and Simultaneous Non-Enzymatic Electrochemical Sensing of Ascorbic acid, Dopamine and Uric acid at their Interface	C	125, 24837- 24848	2021
2	Atul Kumar, Anil Kumar*, G.D Varma	Ultrafast resistive type γ- Fe ₂ O ₃ -rGO nanohybrids based humidity sensor – a respiratory monitoring tool		9, 8002-8010	2021

3	S. Thareja	Water-in-salt' electrolyte	ACS	9, 2338-	2021
	and Anil	based high voltage (2.7 V)	Sustainable	2347	
	Kumar*	sustainable symmetric	Chem. Eng.		
		supercapacitor with superb			
		electrochemical performance -			
		an analysis of the role of			
		electrolytic ions in extending			
		the cell voltage			
4	Ajay	Remediation of Arsenic by	Separation and	50, 283-	2021
	Kumar, H.	Metal/ Metal Oxide Based	Purification	314	
	Joshi and	Nanocomposites/	Rev.		
	Anil	Nanohybrids: Contamination	DOI:		
	Kumar	Scenario in Groundwater,	10.1080/ 154221		
		Practical Challenges, and	19.		
		Future Perspectives.	2020.1744649		
5	Priyanka	Smart soft supramolecular	Dalton Trans.	49,	2020
	and Anil	hybrid hydrogels modulated by		15095-	
	Kumar*	Zn ²⁺ / Ag NPs with unique		15108	
		multifunctional properties and			
		applications			
6	Priyanka	Multistimulus-Responsive	ACS Omega	5,	<mark>2020</mark>
	and Anil	Supramolecular Hydrogels		13672-	
	Kumar*	Derived by in situ Coating of		13684	
		Ag Nanoparticles on 5'-CMP-			
		Capped β-FeOOH Binary			
		Nanohybrids with			
		Multifunctional Features and			
		Applications			
7	Sahil	High Electrochemical	Energy	8,	2020
	Thareja and	Performance of 2.5 V Aqueous	Technol.	1901339	
	Anil	Symmetric Supercapacitor	DOI:	(1 to 11)	
	Kumar*	based on Nitrogen doped	10.1002/ente.20		
		Reduced Graphene Oxide.	1901339		2040
8	Anil	Environmentally benign pH-	New J. Chem.	43,	<mark>2019</mark>
	Kumar and	responsive cytidine-5'-		14997-	
	Priyanka	monophosphate molecule-		15013	
		mediated akaganeite (5'-CMP-			
		β-FeOOH) soft			
		supramolecular hydrogels			
		induced by the puckering of ribose sugar with efficient			
9.	Komal	loading/release capabilities. Zn ²⁺ /Cd ²⁺ -RNA-mediated	I Motor	7 602	2010
9.			J. Mater.	7, 692-	2019
	Gupta and	Intense White-light-emitting	Chem. C	708	
		Colloidal CdSe Nanostructures			

	Anil	in Aqueous Medium –			
	Kumar*	Enhanced Photophysics and			
		Porous Morphology Induced			
		by Conformational Change in			
		RNA.			
10	Anil	Supramolecular Assisted RNA-	J. Phys. Chem.	122,	2018
	Kumar	Templated Fluorescing	\mathbf{C}	7898-7	
	and Komal	Colloidal CdSe QDs Organized		915	
	Gupta	in Porous Morphology in the			
		Presence of 1,3- Diaminopropane – Study of			
		their Multifunctional Behavior			
11	M. Kaloti	Sustainable Catalytic Activity	ACS Omega	<i>3</i> (2),	2018
	and Anil	of Ag-Coated Chitosan-Capped		1529–	
	Kumar	Fe ₂ O ₃ Superparamagnetic		1545	
		Binary Nanohybrids (Ag			
		Fe ₂ O ₃ @CS) for the Reduction			
		of Environmentally Hazardous			
		Dyes - A Kinetic Study of the			
		Operating Mechanism			
		Analyzing Methyl Orange			
		Reduction			
12	M.	Electrochemical behavior of	New J. Chem.	41,	2017
	Khandel-	glycine mediated N-doped		8333-	
	wal and	reduced graphene oxide		8340	
	Anil				
	Kumar				
13	Anil	RNA-mediated fluorescent	J. Mater.	5, 6146-	2017
	Kumar	colloidal CdSe nanostructures	Chem. (A)	6163	
	and Komal	in aqueous medium - analysis			
	Gupta	of Cd ²⁺ induced folding of			
		RNA associated with			
		morphological transformation			
		(0D to 1D)), change in			
		photophysics and selective			
1.4	C D:1	Hg ²⁺ sensing.	IET N1.	11 (2)	2017
14	S. Firdoz	ZnO nanoparticles and their	IET Nanobio- technol.	11 (3),	2017
	and Anil	acarbose-capped nanohybrids	doi:0.1049/iet-	329-335	
	Kumar	as inhibitors for human salivary amylase.	nbt.2016.0115		
15	M. Kaloti	Synthesis of chitosan-mediated	J. Phys. Chem.	<i>120</i> ,	2016
	and Anil	silver coated γ-Fe ₂ O ₃ (Ag-γ-	C	17627-	
	Kumar	Fe ₂ O ₃ @Cs) superparamagnetic		17644	
		binary nanohybrids for			
		multifunctional applications.			

16	M.	One-pot environmental	Dalton Trans.	45,	2016
10	Khandel-	friendly amino acid mediated	Daiton Trans.	5180-	2010
	wal and	synthesis of N-doped		5195	
	Anil	graphene-silver		3173	
	Kumar	nanocomposites with enhanced			
	Kumai	multifunctional behavior			
17	M. Khand-	Supercapacitor applications of	Adv. Mater.	<i>1</i> , 08-13	2016
1 /	elwal and	2-aminoisobutyric acid	Proc.	1, 00-15	2010
	Anil	mediated N-doped graphene.	1100.		
	Kumar	mediated iv-doped graphene.			
18	M.	One-step chemically	J. Mater.	3,	2015
	Khandel-	controlled wet synthesis of	Chem. (A)	22975-	
	wal and	graphene nanoribbons from		22988	
	Anil	graphene oxide for high			
	Kumar	performance supercapacitor			
		applications.			
19	M. Kaloti,	Synthesis of glucose-mediated	Green Chem.	17,	2015
	Anil	Ag - γ-Fe ₂ O ₃ multifunctional		4786-	
	Kumar and	nanocomposites in aqueous		4799	
	N.K.	medium - a kinetic analysis of			
	Navani	their catalytic activity for 4-			
		nitrophenol reduction.			
20	U. Kumar	Fe-induced morphological	J. Mater.	<i>3</i> , 4297-	2015
	Gaur, Anil	transformation of 1-D CuO	Chem. C	4307	
	Kumar and	nanochains to porous			
	G. D.	nanofibers with enhanced			
	Varma	optical, magnetic and			
		ferroelectric properties.			
21	Anil	Photophysical aspects of	J. Phys. Chem.	119,	2015
	Kumar, B.	varying Zn ²⁺ / PbSe	C	6314-	
	Singh and	nanostructures mediated by		6323	
	K. Gupta	RNA leading to the formation			
		of honeycomb-like novel			
		porous morphology			
22	Anil	Supramolecular-directed novel	Green Chem.	17,	2015
	Kumar and	superparamagnetic 5'-		2524-	
	S. K. Gupta	adenosine monophosphate		2537	
		templated β-FeOOH hydrogel			
		with enhanced multi-			
		functional properties.			
23	Anil	A novel synthesis of ultra-thin	J. Mater.	2,	2014
	Kumar and	graphene sheets for energy	Chem. A,	20345-	
	M.	storage applications using		20357	
	Khandel-	malonic acid as a reducing			
	wal	agent.			
L	l		<u> </u>		

24	Anil	5'-Guanosine monophosphate	J. Phys. Chem.	118,	2014
- '	Kumar and	mediated biocompatible porous	(B)	10543-	
	S.K. Gupta	hydrogel of β-FeOOH -		10551	
	one cupin	viscoelastic behavior, loading		10001	
		and release capabilities of			
		freeze dried gel.			
25	Anil	Biotemplated inorganic	Chem. Rev.	114,	2014
25	Kumar and	nanostructures:	(ACS)	7044-	2011
	V. Kumar	Supramolecular directed		7078	
	, , i zumar	nanosystems of		7070	
		semiconductor(s)/metal(s)			
		mediated by nucleic acids and			
		their properties.			
26	Anil	Amino acid mediated	New J. Chem.	38,	2014
	Kumar and	functionalization and reduction		3457-	2011
	M.	of graphene oxide – synthesis		3467	
	Khandelwa	and the formation mechanism		3.07	
	1	of nitrogen-doped graphene.			
27	U. K. Gaur,	The synthesis of self-	CrystEngC-	16,	2014
- '	Anil	assembled 1-D CuO	omm	3005-	
	Kumar and	nanochains in aqueous medium	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3014	
	G. D.	and a study of their			
	Varma	multifunctional features.			
28	Anil	Synthesis of 5'-GMP-mediated	J. Mater.	<i>1</i> , 5818-	2013
	Kumar and	porous hydrogel containing β -	Chem. (B)	5830	
	S.K. Gupta	FeOOH nanostructures:	, ,		
		optimization of its			
		morphology, optical and			
		magnetic properties.			
29	Anil	Optoelectronic properties of	Dalton Trans.	42,	
	Kumar and	dual emitting RNA mediated		11455-	
	B. Singh	colloidal PbSe nanostructures.		11464	
31	Anil	Synthesis of adenine mediated	J. Nanopart.	15:1466	2013
	Kumar and	superparamagnetic colloidal β-	Res.	, 1-16	
	S.K. Gupta	FeOOH Nanostructure(s) –		(DOI	
		study of their morphological		10.1007	
		changes and magnetic		/s11051-	
		behavior.		013-	
				1466-z)	
30	Anil	Zn ²⁺ induced folding of RNA	J. Phys. Chem.	117,	2013
	Kumar and	to produce honeycomb like	(C)	5386-	
	B. Singh	RNA -mediated fluorescing		5396	
		Zn ²⁺ /PbSe nanostructures.			
	l		I .		

32	Anil	Synthesis of guanosine 5'-	Eur. J. Inorg.	269-279	2013
32	Kumar, V.	monophosphate (GMP) -	Chem.	200 210	2015
	Chaudhary	mediated Ag/CdS nanohybrids	Chem.		
	and Vinit	- their self-assembly and			
	Kumar	optoelectronic properties.			
33	Anil	RNA templated water soluble	RSC Advances	2 , 9079–	2012
	Kumar and	Mg ²⁺ / PbSe porous	11.50 Havances	9090	2012
	B. Singh	nanostructures with dual		7070	
	D. Siligii	fluorescence.			
34	Anil	Optical and magnetic behavior	Mater. Chem.	131,	2011
	Kumar and	of Ag encapsulated β -Fe ₂ O ₃	Phys.	230-240	
	A. Singhal	core-shell hollow Nanotubes.	3 3		
			~-	.=	
35	Anil	Synthesis and photophysics of	Chem.	<i>47</i> (14),	2011
	Kumar and	red emitting RNA templated	Commun.	4144 -	
	B. Singh	PbSe nanostructures.		4146	
36	A.	Synthesis, characterization and	S. Afr. J. Chem.	64 , 218-	2011
	Agarwal,	application of nano		224	
	H. Joshi	lepidocrocite and magnetite in			
	and Anil	the degradation of carbon			
	Kumar	tetrachloride.			
37	Anil	Optical, photophysical and	J. Mater.	<i>21</i> , 481-	2011
	Kumar and	magnetic behavior of GMP-	Chem.	496	
	A. Singhal	templated binary (β -			
		Fe ₂ O ₃ /CdS) and ternary (β-			
		Fe ₂ O ₃ /Ag/CdS) nanohybrids.			
38	S. Firdoz,	A novel amperometric	Talanta	83 , 269	2010
	Ma Fang,	biosensor based on single		- 273	
	XiuliYue,	walled carbon nanotubes with			
	Zhifei Dai,	acetylcholine esterase for the			
	Anil	detection of carbaryl pesticide			
	Kumar,	in water.			
	Jiangbin				
39	Anil	Synthesis and optical	Inorg. Chem.	48,	2009
	Kumar and	properties of Guanosine 5'-		11032-	
	V. Kumar	monophosphate - mediated		11038	
		CdS nanostructures: An			
		analysis of their structure,			
		morphology and electronic			
		properties.			
40	Anil	Synthesis and photophysics of	J. Photochem.	<i>208</i> ,	2009
	Kumar, A.	colloidal ZnS/PbS/ZnS	Photobiol. A:	195-202	
	Jakhmola	nanocomposites - an analysis	Chem.		
	and V.	of dynamics of charge carriers.			
	Chaudhary				

41	Anil	Supramolecular – directed	Chem.	5433-	2009
	Kumar and	synthesis of RNA-mediated	Commun.	5435	
	V. Kumar	CdS/ZnS nanotubes.			
42	Anil	Synthesis of colloidal silver	Nanotech-	<i>20</i> ,	2009
	Kumar and	iron oxide nanoparticles –	nology	295606-	
	A. Singhal	study of their optical and		295616	
		magnetic behavior.			
43	Anil	RNA-templated fluorescent	J. Phys. Chem.	113,	2009
	Kumar and	$Zn/PbS (PbS + Zn^{2+})$	C	9553-	
	A.	supernanostructures.		9559	
	Jakhmola				
44	Anil	Time resolved emission	Nanotech-	20,	2009
	Kumar and	studies of Ag-adenine-	nology	095703	
	V.	templatedCdS (Ag/CdS)		-	
	Chaudhary	nanohybrids.		095712	
45	Anil	Self-assemblies from RNA-	J. Phys. Chem.	112,	2008
	Kumar and	templated colloidal CdS	C ,	3633-	
	V. Kumar	nanostructures.		3640	
46	Anil	Synthesis of colloidal β-Fe ₂ O ₃	Nanotechno-	18,	2007
	Kumar and	nanostructures - influence of	logy	475703	
	A. Singhal	addition of Co ²⁺ on their			
		morphology and magnetic			
		behavior.			
47	Anil	Optical and photophysical	J. Photochem.	<i>189</i> ,	2007
	Kumar and	properties of Ag/CdS	Photobiol. A:	272-279	
	V.	nanocomposites – an analysis	Chem.		
	Chaudhary	of relaxation of charge			
		carriers.			
48	Anil	RNA – mediated fluorescent Q-	Langmuir	23,	2007
	Kumar and	PbS nanoparticles.	(Lett.)	2915-	
	A.			2918	
	Jakhmola				
49	Anil	Photocatalytic degradation of	J. Colloid	<i>300</i> ,	2006
	Kumar and	aniline at the interface of TiO ₂	Interface Sci.	244-252	
	3 T 3 C /1				
	N. Mathur	suspensions containing			
		carbonate ions.			
50	Anil	carbonate ions. Photophysics and charge	J. Colloid	297,	2006
50	Anil Kumar and	carbonate ions. Photophysics and charge dynamics of Q-PbS based	J. Colloid Interface Sci.	297 , 607-617	2006
50	Anil Kumar and A.	carbonate ions. Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS and PbS/ZnS		· ·	2006
	Anil Kumar and A. Jakhmola	carbonate ions. Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS and PbS/ZnS semiconductor nanoparticles.	Interface Sci.	607-617	
50	Anil Kumar and A. Jakhmola Anil	carbonate ions. Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS and PbS/ZnS semiconductor nanoparticles. Physicochemical and	Interface Sci. Natl. Acad. Sci.	· ·	2006
	Anil Kumar and A. Jakhmola	carbonate ions. Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS and PbS/ZnS semiconductor nanoparticles.	Interface Sci.	607-617	

		dynamics of the charge carriers.			
52	Anil Kumar and N. Mathur	Photocatalytic oxidation of aniline using Ag ⁺ -loaded TiO ₂ suspensions.	Appl. Catal. A: Gen.	275 ,189 -197	2004
53	Anil Kumar and S. Mital	Electronic and photocatalytic properties of purine(s)-capped Q-CdS nanoparticles in the presence of tryptophol.	J. Mol. Catal. A: Chem.	219 , 65-71	2004
54	Anil Kumar and S. Mital	Synthesis and photophysics of 6-dimethylaminopurine-capped Q-CdS nanoparticles – a study of its photocatalytic behavior.	Int. J. Photoenerg.	6 (2), 61-68	2004
55	Anil Kumar and S. Mital	Photophysics and photocatalytic behavior of composite CdS-purine nanoparticles in the presence of certain indoles.	J. Colloid Interface Sci.	265 , 432-438	2003
56	Anil Kumar and A.K. Jain	Photophysics and photocatalytic properties of Ag ⁺ - doped composite (CdS-TiO ₂) colloidal semiconductor.	J. Photochem. Photobiol. A: Chem.	156, 207-218	2003
57	R.N. Goyal, Anil Kumar and P. Gupta	Electrochemical and persulphate mediated oxidation of indole -3- ethanol	Indian J. Chem.	<i>41A</i> , 719-726	2003
58	Anil Kumar and S. Mital	Synthesis and photophysics of purine-capped Q-CdS nanocrystallites.	Photochem. Photobiol. Sci.	1, 737- 741	2002
59	Anil Kumar and S. Mital	Electronic properties of Q-CdS clusters stabilized by adenine	J. Colloid Interface Sci.	240 , 459-466	2001
60	Anil Kumar, Vaishali and P. Ramamur- thy	Kinetics of oxidation of 3- amino-1-propanol and related compounds by silver (III) species.	J. Chem. Soc. Perkin Trans.	2 (7), 1174 – 1179	2001
61	R.N. Goyal, Anil Kumar and P. Gupta	Oxidation chemistry of indole -3- methanol	J. Chem. Soc. Perkin Trans.	2 (4), 618-623	2001

62	Anil	Photophysics and	J. Colloid	238,	2001
	Kumar and	photocatalytic properties of	Interface Sci.	310-317	
	D.P.S. Negi	Cd(OH) ₂ -coated Q-CdS			
		clusters in the presence of			
		guanine and related compounds			
63	Anil	Photophysics and	J. Mol. Catal.	<i>165</i> ,	2001
	Kumar and	photochemistry of colloidal	A: Chem.	265-273	
	A. K. Jain	CdS-TiO ₂ coupled semiconductors			
		Photocatalytic oxidation of			
		indole			
64	Anil	Photocatalytic and	J. Photochem.	134,	2000
	Kumar and	photophysical behaviours of	Photobiol. A:	199-207	
	D.P.S. Negi	Cd(OH) ₂ - coated Q-CdS in the	Chem.		
		presence of tryptophan			
65	Anil	Kinetics and mechanism of	Int. J. Chem.	32 , 286-	2000
	Kumar,	oxidation of ethylenediamine	Kinet.	293	
	Vaishali	by diperiodatoargentate (III)			
	and P.	ion.			
	Ramamurth				
	у				
66	Anil	Photocatalytic oxidative C-C	Res. Chem.	25 , 695-	1999
	Kumar and	bond cleavage of 1,2-	Intermed.	708	
	A. Kumari	ethanediol initiated by aqueous			
		titanium dioxide dispersion -			
		influence of Ag ⁺ on the			
67	A -17	catalytic activity	D.I.I.	10.772	1000
67	Anil	Kinetics of oxidation of glycine and related substrates by	Polyhedron	<i>18</i> , 773-	1999
	Kumar, P.	diperiodatoargentate (III)		780	
	Kumar and	aiperioanicargenaire (iii)			
	P.				
	Ramamur- thy				
68	Anil	Kinetics and mechanism of	J. Phys. Org.	12, 79-	1999
00	Kumar and	oxidation of nitrilotriacetic acid	Chem.	85	1777
	P. Kumar	by diperiodatoargentate (III)	Chem.		
69	Anil	Separation and quantification	Chem. Anal.	<i>43</i> , 93-	1998
	Kumar and	of aniline and its oxidation	(warsaw)	97	1//0
	A. Panwar	products	(
70	Anil	Colloidal CdS induced	J. Phys. Org.	11, 277-	1998
. •	Kumar and	photocatalytic reaction of 2-	Chem.	282	-//
	S. Kumar	methylindole - mechanistic			
		analysis of oxidation of indoles	1 61 -		1000
71	Anil	Photocatalytic oxidative C-C	J. Chem. Res.	<i>1</i> , 54-55	1998
	Kumar, S.	bond cleavage of the pyrrole	(S)		

	Kumar and D.P.S. Negi	ring in 3-methylindole induced by colloidal CdS particles			
72	Anil Kumar and A. Panwar	Kinetics of oxidation of 2,4-, 2.6-, 3,4- and N, N- dimethylanilines by [Ag(OH) ₄] ⁻	Oxidn. Commun.	20 , 258- 266	1997
73	Anil Kumar and S. Kumar	Catalytic effect of Ag ⁺ in colloidal CdS- induced photooxidation of aniline	Chem. Lett.	711- 712	1996
74	Anil Kumar and S. Kumar	Enhancement of luminescence of colloidal CdS in presence of indoles - study of CdS sensitized reaction of indole	J. Photochem. Photobiol. A: Chem.	83 , 251- 256	1994
75	Anil Kumar and A. Panwar	Kinetics of oxidation of aniline and xylidine by tetrahydroxoargentate ion.	Bull. Chem. Soc. (Japan)	67, 1207- 1212	1994
76	Anil Kumar and A. Panwar	Gas chromatographic separation of isomeric aminophenols, aniline, phenol, benzoquinone and azobenzene on HP-1 capillary column	Mikrochim. Acta	111, 177-182	1993
77	Anil Kumar and S. Kumar	Photoluminescence of colloidal cadmium sulfide in the presence of aniline - study of the CdS - sensistized photocataytic reaction	J. Photochem. Photobiol. A: Chem.	69 , 91- 95	1992
78	Anil Kumar	Photoinduced processes in colloidal semiconductors – physicochemical properties and applications.	ISRAPS Bulletin (Published by ISRAPS)	3 (1), 2-5	1992
79	S.P. Srivastava, Anil Kumar, S. Sinha and A. Panwar	Selective oxidation of xylidines by peroxydisulphate ion - oxidation of 2,3-, 2,6- and 3,5 - xylidines	Oxidn. Commun.	14 (3), 196-202	1991
80	Anil Kumar, A. Henglein and H. Weller	Photochemistry and radiation chemistry of semiconductor colloids - preparation of colloidal PbO ₂ and various electron transfer processes	J. Phys. Chem.	93 , 2262-2266	1989
81	Anil Kumar, E. Janata and	Photochemistry of colloidal semiconductors - quenching of	J. Phys. Chem.	92 , 2587-2591	1988

	A.	CdS fluorescence by excess			
	Henglein	positive holes			
82	A.	Photochemistry and radiation	Chem. Phys.	132,	1986
	Henglein,	chemistry of semiconductor	Lett.	133-136	
	Anil	colloids - reaction of the			
	Kumar, E.	hydrated electron with CdS and			
	Janata and	non-linear optical effects.			
	H. Weller				
83	Anil	Kinetics of oxidation of	J. Phys. Chem.	86 ,	1982
	Kumar	ethanolamine and diols by Ag		1674-	
		(II).		1678	
84	Anil	Reduction and demetalation of	J. Phys. Chem.	<i>85</i> ,	1981
	Kumar and	silver porphyrins in aqueous		2830-	
	P. Neta	solution.		2832	
85	Anil	Oxidative C-C bond cleavage	J. Am. Chem.	103,	1981
	Kumar	of 1, 2-diols by Ag (II)	Soc.	5179-	
				5182	
86	Anil	Complexation and oxidation of	J. Am. Chem.	<i>102</i> ,	1980
	Kumar and	glycine and related compounds	Soc.	7284-	
	P. Neta	by Ag (II).		7289	
87	Anil	Oxidation of Ag ⁺ and Ag	J. Phys. Chem.	83,	1979
	Kumar and	(NH ₃) ₂ + complex as studied by		3091-	
	P. Neta	pulse radiolysis.		3095	
88	S.P.	Kinetics and mechanism of Ag ⁺	Rev. Roumaine	26 , 939 -	1981
	Srivastava,	- catalysed oxidation of	de Chim.	946	
	Anil	hexane- 1,6-diol by			
	Kumar and	peroxydisulphate ion.			
	V.K. Gupta				
89	S.P.	Kinetics and mechanism of	Oxidn.	<i>1</i> , 265-	1981
	Srivastava,	Ag(I)-catalysed oxidation of	Commun.	273	
	Anil	pentane -1,5-diol by			
	Kumar,	peroxydisulphate ion			
	A.K. Mittal				
	and V.K.				
	Gupta				
90	S.P.	Kinetics and mechanism of	Indian J.	<i>19A</i> ,	1980
	Srivastava,	periodate oxidation of salicylic	Chem.	578-579	
	G.	acid.			
	Bhattacha-				
	rjee, Anil				
	Kumar and				
	S. Pal				

91	S.P. Srivastava, Anil Kumar, A.K. Mittal and V.K. Gupta	A kinetic study of peroxydisulphate oxidation of sulphadrugs - oxidation of sulphanilamide.		17A, 593 - 595	1979
92	J.C. Gupta, M.K. Mahe- shwari, S.P. Srivastava and Anil Kumar	Kinetics and mechanism of Ag ⁺ - catalysed oxidation of amyl alcohol, iso-amyl alcohol and crotylcohol by peroxydisulphate ion.	Indian J. Chem.	<i>18A</i> , 31-33	1979
93	S.P. Srivastava and Anil Kumar	Kinetics and mechanism of Ag ⁺ - catalysed oxidation of 1,4- butanediol by peroxydisulphate ion.	Kinet. Catal.	19, 1415- 1418	1978
94	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar	Thin layer chromatography or some closely related physiologically active 2-benzoyl benzofuran deriavatives.	Chem. Anal. (Warsaw)	23, 837	1978
95	S.P. Srivastava and Anil Kumar	Ag ⁺ - catalyzed presulphate oxidation products of 1,3-propanediol, 1-4-butanediol and 1,5-pentanediol.	Indian J. Chem.	15B, 967-968	1977
96	S.P. Srivastava and Anil Kumar	Kinetics of Ag ⁺ - catalysed oxidation of 1,3- propanediol by peroxydisulphate ion - a reinvestigation.	Indian J. Chem.	15A, 1114 - 1115	1977
97	S.P. Srivastava and Anil Kumar	Kinetics and mechanism of Ag ⁺ - catalysed oxidation of glycerol by peroxydisulphate ion - An analysis of consecutive reactions.	Indian J. Chem.	15A, 1061 - 1065	1977

98	S.P.	Rapid TLC separation of some	Z. Anal. Chem.	286 , 248	1977
	Srivastava,	closely related coupled			
	R.N. Goyal,	products of β-ketosester with			
	Rajeev Jain	aryldiazonium chlorides.			
	and Anil				
	Kumar				
99	S.P.	TLC separation of closely	Z. Anal. Chem.	286 , 247	1977
	Srivastava,	related diols.			
	V.K. Dua				
	and Anil				
	Kumar				
100	S.P.	Kinetics of silver catalysed	J. Indian	<i>32</i> , 404 -	1975
	Srivastava,	oxidation of formamide by	Chem. Soc.	407	
	H. Singh	potassium peroxydisulphate.			
	and Anil				
	Kumar				

(L). Major Innovative Achievements in Research – In chronological Order

(a). Analysis of the catalytic role of Ag⁺ in initiating certain redox reactions

In a series of papers on this issue, the species of silver were generated chemically, radiolytically and electrochemically and then investigated their reactions kinetically on early as well as longer time scales. ¹⁻¹¹ Initial work on this area was carried out at *Rad. Lab., Univ. of Notre Dame, USA* in collaboration mainly with renowned Radiation Chemist, *Prof. P. Neta*. These investigations led to establish some *long debated issues* on catalytic role of Ag⁺ in a number of redox reactions in aqueous medium.

S.No	Reference	Citations
		*
1.	Anil Kumar and P. Neta, J. Phys. Chem. 83, 3091-3095 (1979).	21
2.	Anil Kumar and P. Neta, J. Am. Chem. Soc. 102, 7284-7289 (1980).	43
3.	Anil Kumar, J. Am. Chem. Soc. 103, 5179-5182 (1981).	20
4.	Anil Kumar and P. Neta, J. Phys. Chem. 85, 2830-2832 (1981).	28
5.	Anil Kumar, J. Phys. Chem. 86, 1674-1678 (1982).	16
6.	Anil Kumar and A. Panwar, Bull. Chem. Soc. (Japan) 67, 1207-1212 (1994).	08
7.	Anil Kumar and A. Panwar, Oxidn. Commun. 20, 258-266 (1997).	04
8.	Anil Kumar and P. Kumar, J. Phys. Org. Chem. 12, 79-85 (1999).	46
9.	Anil Kumar, P. Kumar and P. Ramamurthy, Polyhedron 18, 773-780 (1999).	125
10.	Anil Kumar, Vaishali and P. Ramamurthy, Int. J. Chem. Kinet., 32, 286-293	18
	(2000).	
11.	Anil Kumar, Vaishali and P. Ramamurthy, J Chem. Soc. Perkin Trans. 2 (7)	02
	1174–1179 (2001).	

It also led us to realize the importance of **zero valent Ag** (*now known as Ag nanoparticles*) in catalysis and led us to submit a proposal to DST, New Delhi in 1984 incorporating this and other literature ideas.

(b). Initiation of Research in the Area of Nanoscience and Nanotechnology

We had been among the early workers, who have initiated work on nanomaterials in India. In our first research proposal entitled. "Catalytic Action of Colloidal Microelectrodes in Photoinduced Chemical Reactions," submitted to DST, New Delhi in 1984. The photocatalytic work using colloidal solution of metals and semiconductors as photocatalyst(s) was proposed. After it was sanctioned, however, it could not be taken up as we got an offer from West Germany to collaborate with a pioneering worker, Prof. A. Henglein, Hahn-Meitner, Institut, Berlin as Guest Scientist to carry out a research project in the related area.

(c). Synthesis and Analysis of Optical Properties of Semiconductor NPs/QDs – Effect of chemically stored charge carriers on the charge dynamics

In our early investigations with *Prof. A. Henglein at HMI, Berlin* on colloidal nanoparticles, the effect of chemically stored charge carriers on the **optical** and **photophysical** properties of some colloidal semiconductor NPs (**CdS** and **PbO**₂) was examined. 12-14 Such a situation is often encountered in studies on nanomaterials involving *intense light sources like lasers and high energy radiation beam*. In the experiments with CdS NPs the excess electrons and holes were injected into the particles radiolytically / photolytically. It exhibited *non-linear optical* effect. The accompanied optical and emission changes were also monitored using **combined photo- and radiation chemical** techniques, 12,13 revealing an interesting charge carrier dynamics in irradiated semiconductors.

S.No.	Reference	Citations*
12	A. Henglein, Anil Kumar, E. Janata and H. Weller, Chem. Phys. Lett. 132,133-	179
	136 (1986).	
13	Anil Kumar, E. Janata and A. Henglein, J. Phys. Chem. 92, 2587-2591 (1988).	50
14	Anil Kumar, A. Henglein and H. Weller, J. Phys. Chem. 93, 2262-2266 (1989).	22

(d). Synthesis, Analysis and Enhancement of Physicochemical Features of Nanomaterials for Multifunctional Applications

(i). Photocatalytic Action of Semiconductor Microelectrodes

In a subsequent work through a **DST project** awarded in 1989, colloidal particles of CdS semiconductor were employed as photocatalyst(s) in context of developing *efficient solar energy conversion systems*.¹⁵⁻¹⁹ The photogenerated electron-hole pairs were exploited to perform *redox reactions at the interface of semiconductor nanocrystallites* by using a variety of redox couples such as aromatic amines and indoles in aerated aqueous medium under *visible light irradiation* and carried out extensive mechanistic analysis involving the interfacial interactions and intermediates, which are very well cited.

S.No.	Reference	Citations*
-------	-----------	------------

15	Anil Kumar and S. Kumar, J. Photochem. Photobiol. A: Chem., 69, 91-95	26
	(1992).	
16	Anil Kumar and S. Kumar, J. Photochem. Photobiol. A: Chem., 83, 251-256	21
	(1994).	
16	Anil Kumar and S. Kumar, Chem. Lett., 711-712 (1996).	05
18	Anil Kumar, S. Kumar and D.P.S. Negi, J. Chem. Res. 1, 54-55 (1998).	03
19	Anil Kumar and S. Kumar, J. Phys. Org. Chem. 11, 277-282 (1998).	09

(ii). Improvement in Photocatalytic Action and Charge Separation in Illuminated Surface Modified and Binary Semiconductor Components

In other DST project awarded in 1994, surface of these particles were modified chemically by coating with $Cd(OH)_2$ and coupling of two semiconducting components like $CdS-Ag_2S$, $CdS-TiO_2$ were synthesized and identified by analyzing their characteristic absorption and emission, particle size, emission lifetime and redox reactivity.²⁰⁻²⁷ Coating of $Cd(OH)_2$ on Q-CdS produced composite particles with enhanced photostability ($\Phi_{-CdS} < 0.002$), luminescing efficiency and emission lifetime.²⁰⁻²¹ These particles were highly selective in initiating the photoinduced reactions of solutes like certain **indoles** and **nucleic bases**. Relaxation kinetics demonstrated that there is a distribution of charge carriers to various depths on the surface of $Cd(OH)_2$ - coated Q-CdS. Shallowly trapped hole affects the oxidation by intercepting the bulk solute *via* H-bonding interaction involving -OH of $Cd(OH)_2$ layer of CdS and certain functional group(s) of the additives. Deeply trapped hole remains inaccessible for the additives present either on the surface or in the bulk.

Doping of Ag^+ to Q-CdS generated **microheterojunctions** consisting of CdS - Ag_2S phases and doping of metal ions to oxygenated TiO_2 suspensions also increased the reactivity of holes.²³ The coupling of $Cd(OH)_2$ - **coated Q-CdS** with **colloidal TiO_2** in aqueous medium removes and the illumination of these composites under visible light improved the charge separation leading to the enhanced reactivity of e^-h^+ pair. The activation of both $Cd(OH)_2$ - coated Q-CdS and TiO_2 with certain transition metal ions and then coupling them with their respective non-activated component produces an efficient photocatalyst in certain cases.²⁴ The catalytic action of Ag^+ is understood in terms of the positive redox potential of Ag^+/Ag couple, which serves to intercept the conduction band electron by reducing the e^- - h^+ recombination.

Nucleic bases were observed to stabilize Q-CdS clusters effectively. Their capping improved the **photocatalytic activity at the interface significantly.**²⁵⁻²⁷ A few of these nanosystems could be recycled several times without any significant loss in reactivity.

Some research work addressing the **environmental issues** using TiO₂ suspensions in aqueous medium was also undertaken. Mechanisms of these reactions were analyzed, ^{28,29} which are largely accepted by readers.

S.No	Reference	Citations
		*
20	Anil Kumar and D.P.S. Negi, J. Photochem. Photobiol. A:Chem.134.199-207(2000).	15
21	Anil Kumar and D.P.S. Negi, J. Colloid Interface Sci. 238, 310-317 (2001).	11
22	Anil Kumar and A.K. Jain, J. Mol. Catal. A: Chem. 165, 267-275 (2001).	101

23	Anil Kumar and A.K. Jain, J. Photochem. Photobiol. A:Chem. 156, 207-218	26
	(2003).	
24	Anil Kumar and S. Mital, J. Colloid Interface Sci. 240, 459-466 (2001).	16
25	Anil Kumar and S. Mital, Photochem. Photobiol. Sci. (commun.) 1, 737-41	15
	(2002).	
26	Anil Kumar and S. Mital, J. Colloid Interface Sci. 265, 432-438 (2003).	08
27	Anil Kumar and S. Mital, Int. J. Photoenerg. 6(2), 61-68 (2004).	12
28	Anil Kumar and N. Mathur, J. Colloid Interface Sci. 300, 244-252 (2006).	110
29	Anil Kumar and S. Mathur, Appl. Catal. A: Gen. 275,189-197 (2004).	65

(iii). Enhancement of Electronic Properties and Photophysics of Quantized II-IV and IV-VI Semiconductors

An interesting **achievement** was made by carrying out **bio-molecule(s) mediated synthesis of II-VI and IV-VI semiconductor nanostructures in quantum-confined region.**³⁰⁻⁴³ In a DST project funded under nanomission, interfacing of Q-ZnS with PbS and Q-PbS with ZnS has been utilized to produce tailored PbS nanocomposites with tunable electronic properties.³⁰ The separation of charge is enhanced in case of PbS/ZnS core-shell particles. The deposition of Q-ZnS layer as shell at the interface of Q-ZnS/PbS produces ZnS/PbS/ZnS nanocomposites.^{31,32} The addition of Zn²⁺ further improves the charge separation in this system.

In our original work published in Langmuir (letter), RNA-capped Q-PbS³³ were produced in face centered cubic phase, which displayed excitonic features with relatively a strong narrow emission band (FWHM 70 nm) at 675 nm under broad excitation range extending from 330 to 620 nm. In the presence of Zn²⁺ these particles produced fluorescent Zn/PbS (PbS+ Zn²⁺) supernanostructures.³¹ We also demonstrated the nucleation and growth of templating Q-CdS NPs,³² CdS/ZnS nanotubes³⁵ to create novel nano- and micro assemblies. In other interesting work we have fabricated GMP-mediated nanowires³⁴ with increased separation of charge. During last two years we had synthesized fluorescing CdSe nanostructures,^{42,43} and exhibited rectifying behavior. These nanohybrids were exploited for sensing of toxic metal ions like Hg²⁺ up to 100 pm.⁴³

Lately we have succeeded in the synthesis of dual fluorescing PbSe nanostructures having a wide absorption range covering UV-visible-NIR region (200–1200 nm) of varied morphologies. ³⁶⁻⁴² The excess metal ions such as Mg^{2+} , ⁴¹ and Zn^{2+} and present on the RNA strand induces polarization in the PbSe through Se to result in varied supramolecular interactions by replacing Pb²⁺ among different building blocks to produce *porous and honeycomb like morphologies* in the process of self-assembly. The poor NIR absorption and fairly intense fluorescence in the wavelength range of 850–1100 nm of the as synthesized PbSe nanohybrids and relatively higher red (~300 ns), and NIR lifetime (31.8 ns) as compared to those of organic fluorescent dyes (<1.5 ns) shows the potential of these materials to serve as an effective tool for the fluorescence imaging of body fluids and tissues in the NIR region, where tissues do not absorb.

From this work we have established that the specific RNA sequence is not required for mediating the synthesis of fluorescing II-VI (CdS, ZnS, CdSe) and IV-VI semiconducting nanostructures. Apart from that their growth and change in morphologies, their optoelectronic behavior could be controlled quite effectively. Lately, their sensing applications are being

performed.⁴¹⁻⁴³ We have recently developed widely explored intense white emission from CdSe based nanostructures.⁴⁴

We have also contributed a review article on **biotemplated inorganic nanostructures** published in **Chemical Reviews** comprising semiconductor(s)/metal(s) nanosystems mediated by nucleic acids and their optical, photophysical and magnetic properties.⁴⁵ This review is well cited.

Some work was also contributed on bare Fe and Mn doped CuO semiconducting nanostructures^{46,47} of varied morphologies and observed their **enhanced optical**, **magnetic**, **ferroelectric and dielectric behavior**.

S.No	Reference	Citations
•		*
30	Anil Kumar and A. Jakhmola, J. Colloid Interface Sci. 297, 607-617 (2006).	21
31	Anil Kumar and A. Jakhmola, J. Phys. Chem. (C), 112, 3633-3640 (2009).	13
32	Anil Kumar, A. Jakhmola and V. Chaudhary, J. Photochem. Photobiol A:	12
	Chem 208, 195- 202 (2009).	
33	Anil Kumar and A. Jakhmola, Langmuir (Lett.), 23, 2915-2918 (2007).	82
34	Anil Kumar and V. Kumar, J. Phys. Chem. (C), 112, 3633-3640 (2008).	27
35	Anil Kumar and V. Kumar, Inorg. Chem., 48, 11032-11037 (2009).	13
36	Anil Kumar and V. Kumar, Chem. Commun., 5433-5435 (2009).	05
37	Anil Kumar and B. Singh, Chem. Commun., 47 (14), 4144 - 4146 (2011).	15
38	Anil Kumar and B. Singh, Dalton Trans., 42, 11455–11464 (2013).	07
39	Anil Kumar and B. Singh, J. Phys. Chem. (C), 117, 5386–5396 (2013).	05
40	Anil Kumar, B. Singh and K. Gupta, J. Phys. Chem. (C), 119, 6314-6323	-
	(2015).	
41	Anil Kumar and B. Singh, RSC Advances, 2, 9079–9090 (2012).	02
42	Anil Kumar and K. Gupta, J. Mater. Chem. (A), 5, 6146-6163 (2017).	09
43	Anil Kumar and K. Gupta, J. Phys. Chem. (C), 122, 7898–7915 (2018).	01
44	Anil Kumar and K. Gupta, J. Mater. Chem. (C), DOI: 10.1039/c8tc05560b	-
	(2019).	
45	Anil Kumar and V. Kumar, Chem. Rev. 114, 7044-7078 (2014).	63
46	Umesh Kumar Gaur, Anil Kumar and G D Varma CrystEngComm (RSC), 16,	21
	3005–3014 (2014).	
47	Umesh Kumar Gaur, Anil Kumar and G D Varma, J. Mater. Chem. C, 3,	20
	4297- 4307 (2015).	

(iv). Mechanistic Analysis of Charge Separation Dynamics and Photophysics of Metal-Semiconductor binary Nanohybrids

In **Ag/CdS** nanocomposites the content of Ag was noted to modify the nature of surface interaction between the two components by influencing the emission behavior and charge carrier dynamics in a complex scheme. At low molar ratio of Ag:CdS an enhancement in fluorescence is observed which has been attributed to the excited state charge transfer interaction between the two components. Relaxation kinetics of charge carriers of CdS also revealed the formation of **transitory CT complex** between excited CdS and Ag, in which the extent of electron transfer is controlled by the amount of Ag. With biotemplated Ag/CdS nanocomposites an enhancement in the intensity of emission of bare CdS

by about 7 folds associated with an increase in the separation of charge. This **mechanism**, proposed for the first time, is well cited.

S.No.	Reference	Citations*
48	Anil Kumar and V. Chaudhary, J. Photochem. Photobiol. A: Chem. 189, 272-	27
	279 (2007).	
49	Anil Kumar and V. Chaudhary, Nanotechnology, 20, 095703 - 095712 (2009).	16
50	Anil Kumar, V. Chaudhary and V. Kumar, Eur. J. Inorg. Chem., 269-279	01
	(2013).	

(e). Iron Oxide Based Nanosystems for Multifunctional Applications

(v). Development of Iron Oxide based Nanostructures and Nanohybrids

Iron oxide based magnetic nanostructures due to their wide ranging multi-disciplinary applications are being considered to be important being environmentally benign, biocompatible and cost effective. In a CSIR sponsored project we have developed several **iron oxide based nanosystems** in **beta phase** in different morphologies exhibiting superparamagnetic behavior. For the first time silver iron oxide (**AgFeO**₂) NPs⁵¹ in β - phase depicted a narrow size distribution and the water soluble core-shell nanostructures consisting of colloidal Ag in the core and iron oxide hollow nanotubes in the shell. The **binary** and **ternary nanohybrids** of iron oxide with other semiconducting (CdS) and metal (Ag) NPs⁵³ have also been synthesized and analyzed the dynamics of charge carriers in the irradiated systems.

S.No.	Reference	Citations*
51	Anil Kumar and A. Singhal, Nanotechnology, 18, 475703 (2007).	36
52	Anil Kumar and A. Singhal, Nanotechnology, 20, 295606-295616 (2009).	19
53	Anil Kumar and A. Singhal, Mater. Chem. Phys. 131, 230-240 (2011).	12
54	Anil Kumar and A. Singhal, J. Mater. Chem., 21, 481-496 (2011).	15

(vi). Biotemplated colloidal β -FeOOH Nanohybrids & Hydrogels – their Formation, Loading and Release Capabilities

In other project biotemplated colloidal β –FeOOH nanostructures by the hydrolysis of FeCl₃ using adenine, ⁵⁵ 5'–AMP⁵⁶ and 5'–GMP⁵⁷ biomolecules as template(s). In these nanostructures, β –FeOOH displays enhanced optical and magnetic features as compared to that of bare β –FeOOH, which are fairly different to those of α –Fe₂O₃, β –Fe₂O₃, γ –Fe₂O₃, Fe₃O₄ and γ –FeOOH. Bare β –FeOOH exhibits the formation of nanorods, whereas in the presence of biotemplates it showed the biomolecule dependent change(s) in the morphology by converting nanorods to quantum dots. The extent of interaction of biomolecule with Fe³⁺ controlled this conversion and follows the order: 5'–AMP > 5'-GMP > adenine. These templates have also been found to form hydrogels with β –FeOOH. In view of the template like 5'-GMP / 5'-AMP and β -FeOOH being biocompatible and the hydrogels being superparamagnetic, we have explored their viscoelastic properties, loading and release capabilities in the context of their possible biomedical applications.⁵⁸ In our recent work we have achieved remarkable success in developing hitherto unreported 5'-CMP molecule based smart hydrogels.⁵⁹⁻⁶¹ The high porosity, surface area, % swelling, and loading and release performance of the hydrogel indicate its potential for drug delivery and other biological / biomedical applications.

S.No.	Reference	Citations*
-------	-----------	------------

55	Anil Kumar and S. K. Gupta, J. Nanopart. Res., 15:1466, 1-16 (2013) (DOI 10.1007/s11051-013-1466-z).	15
56	Anil Kumar and S. K. Gupta, Green Chem., 17, 2524–2537 (2015).	19
57	Anil Kumar and S. K. Gupta, J. Mater. Chem. (B), 1, 5818-5830 (2013).	15
58	Anil Kumar and S. K. Gupta, J. Phys. Chem. (B), 118, 10543-10551 (2014).	11
59	Anil Kumar and Priyanka, New J. Chem. 43, 14497-15013 (2019).	07
60	Priyanka and Anil Kumar, ACS Omega, 5, 13672–13684 (2020).	04
61	Priyanka and Anil Kumar, Dalton Trans. 49, 15095-15108 (2020).	-

(vii). Greener Protocols for gamma Iron Oxide (γ -Fe₂O₃) based Nanosystems - their SERS, Biological and Catalytic Applications

Some nanocomposites/nanohybrids of iron oxide like glucose mediated and chitosan mediated silver coated γ -Fe₂O₃ like Ag- γ -Fe₂O₃⁶⁰ and Ag- γ -Fe₂O₃@Cs^{61,62} have been explored for their catalytic, SERS and antibacterial activities using the model dye(s) and bacteria, respectively. The superparamagnetic behavior of as synthesized binary nanocomposites at room temperature with high value of saturation magnetization makes them highly suitable for usage as catalyst, allowing their convenient recyclability. All the components of the as synthesized nanocomposite(s) being biocompatible, environmentally benign, demonstrating effective catalytic, SERS and antibacterial activities qualify them as a greener nanosystems(s) with multifunctional applications. The catalytic reduction of certain dyes investigated kinetically at their interface followed Langmuir-Hinshelwood's mechanism. Further work on these nanosystems is in progress.

S.No.	Reference	Citations*
60	M. Kaloti, Anil Kumar and N. Navani, Green Chem., 17, 4786-4799 (2015).	26
61	M. Kaloti, and Anil Kumar, J. Phys. Chem. C 120, 17627-17644 (2016).	34
62	M. Kaloti, and Anil Kumar, ACS Omega, 3 (2), 1529–1545 (2018).	18

(viii). Greener Protocols for Synthesis of Reduced Graphene Oxide (rGO) – Supercapacitor and SERS Applications

Lately, we have synthesized ultra-thin⁶³ and a few layer(s) thick N-functionalized graphene sheets⁶⁴ employing mild/environmental friendly reducing agents for the effective reduction of GO under mild experimental conditions in aqueous medium. The higher nucleophilicity of the malonic acid is observed to be more effective for the efficient reduction of GO to produce thin graphene sheets. The judicious control of pH of the reaction mixture brings a change in the morphology of graphene into nanoribbons⁶⁸ involving supramolecular interactions among the residual functionalities of reduced GO and malonic acid besides controlling the *nucleophilicity* of the later. The changed morphology of graphene exhibit improved characteristic features for the high performance supercapacitor applications.⁶⁸ The functionalization of N-doped graphene (GRH-Gly) with Ag NPs further enhanced the multifunctional features as regards to its conductivity, surface area and SERS.⁶⁸ In our recent work we have succeeded in extending the potential window of symmetric supercapacitor to remarkably high value of 2.5 V with significantly higher energy density at power density.⁶⁹ These systems are found to be with relatively better conducting with fairly high value of specific capacitance at higher current densities, exhibiting potential for supercapacitor applications.⁶²⁻⁶⁸ Water-in-Salt like electrolyte enhance the cell voltage to 2.7 V.⁷⁰ Further work on making devices using environmentally benign

materials, *electrolytic components* and *protocols* is in progress. A patent on enhanced features of these materials has been filed two years back. Lately, based on rGO, we have developed an efficient humidity sensor⁷¹ and a non-enzymatic electrochemical sensor for certain biomolecules.⁷²

S.No.	Reference	Citations*
63	Anil Kumar and M. Khandelwal, J. Mater. Chem. (A), A, 2014, 2, 20345–	28
	20357 (2014).	
64	Anil Kumar and M. Khandelwal, New J. Chem., 38, 3457-3467 (2014).	52
65	M. Khandelwal and Anil Kumar, Advanced Materials Proceedings 1, 08-13	
	(2016).	
66	M. Khandelwal and Anil Kumar, New J. Chem., 41, 8333-8340 (2017).	14
67	M. Khandelwal and Anil Kumar, J. Mater. Chem. (A), 3, 22975-22988	64
	(2015).	
68	M. Khandelwal and Anil Kumar, Dalton Trans., 45, 5180-5195 (2016).	31
69	S. Thareja and Anil Kumar, Energy Technol., 1901339 (2020).	10
70	S. Thareja and Anil Kumar, ACS Sustainable Chem. Engg., 9, 2338-2347	12
	(2021).	
71	A. Kumar, Anil Kumar and G.D Varma, J. Mater. Chem. C, 9, 8002-8010	05
	(2021).	
72	S. Thareja and Anil Kumar, J. Phys. Chem. C, 125, 24837-24848 (2021).	06

^{*}Note - The citations shown above are as per Google Scholar Data including Self-citations.

In summary, we have made several innovative contributions to the research in the area of *Physical Chemistry* covering wide ranging topics on *chemical kinetics*, *photochemistry/radiation chemistry*, and *nanochemistry*.

(M). Details of M.Tech. /M. Phil. Supervised (21):

S. No.	Name of the Student	Title of Dissertation
	Name of the Supervisor(s)	
	Year	
1.	Avdesh Kumar	Synthesis of Glucose Mediated Ag/ZnO
	Prof. Anil Kumar	Nanocomposites and a Study of Their Optical
	2014	Properties
2.	Harsh Kumar	Synthesis of PVP Stabilized Silver Nanostructures and
	Prof. Anil Kumar	Study of Their Physical and Biological Properties
	2013	
3.	Neetu Yadav	Synthesis of Cystein-Coated-Ferrite Nanoparticles-
	Prof. Anil Kumar	Study of Adsorption of Certain Hazardous Metal Ions
	2013	on Their Surface
4.	Kanchan Yadav	Syntheis of Upconverting NaGdF ₄ : Tm ³⁺ /Yb ³⁺
	Prof. Anil Kumar	Nanoparticles- Study of Their Biocompatible Surface
	2012	Modification
5.	Queeny Dasgupta	Synthesis of Biotemplated Fluorescent Silver
	Prof. Anil Kumar	Nanostructures and Their Physicochemical Properties
	2012	
6.	Anuj Kumar	Synthesis and Characterization of Ag-supported
	Prof. Anil Kumar	Hydroxylapatite γ-Fe ₂ O ₃ Nanocomposites (AgHAP- γ-
	2011	Fe_2O_3)

7.	Linu M	Synthesis of Surface-Modified Superparamagnetic Iron
	Prof. Anil Kumar	Oxide Nanocomposites
	2011	
8.	Shaik Firdoz	Synthesis of Metal Oxide Nanoparticles and Their
	Prof. Anil Kumar	Inhibitory Action for Glycoside Hydrolases
0	2010	Countries Characteristics and Application of
9.	Ashutosh Agarwal Prof. Anil Kumar	Synthesis, Characterization and Application of Nanoparticles in Water Remediation
	Prof. Himanshu Joshi	Transparticles in water Remediation
	2009	
10.	Santi Prasad Chakrabarti	Study of Physical and Electrical Properties of Ferric
	Prof. Anil Kumar	Oxide Nanoparticles
	Prof. R. Nath	
	2004	
11.	Neeru Gupta	Physicochemical Properties of Metal Sols
	Prof. Anil Kumar 2003	
12.	Lallan Singh Yadav	Development of TiO ₂ Supported Rigid Material- Study
12.	Prof. Anil Kumar	of Their Photocatalytic Activity
	2001	or rhen rhoseeaany sie rieuvity
13.	Anshuman Jakhmola	Photocatalytic Redox Reactions of Certain Organics
	Prof. Anil Kumar	Intiated by TiO ₂ Suspensions
	2000	
14.	Tapan Bhatnagar	Analysis of Photocatalytic Behaviour of TiO ₂
	Prof. Anil Kumar	Suspension in Aqueous Medium for Certain Redox
15.	1999 Jaget Singh	Couple(s) Photooxidation of Certain Organics Using TiO ₂
13.	Jagat Singh Prof. Anil Kumar	suspension as catalyst
	1998	Suspension as catalyst
16.	Kuldeep Singh Bhandari	Study of Ruthenium (II) Tris(Bipyridyl) – Sensitized
	Prof. Anil Kumar	Photochemical Reaction of Indole – Effect of Certain
	1995	Semiconductors on the Mechanism of the Reaction
17.	Lalit Mohan Singh Negi	Study of Cadmium Sulphide- Induced Photochemical
	Prof. Anil Kumar	Reaction of 2,3- Dimethyl Indole
1.0	1995	Discours of the control of the contr
18.	Ranjana Uniyal Prof. Anil Kumar	Photosensitized Reaction of Aniline Using Mixed and co-Colloids Catalysis of Zinc Sulfide and Cadmium
	1993	Sulfide
19.	Nidhi Bharti	Photosensitized decomposition of 1-Naphtylamine
17.	Prof. Anil Kumar	Using Visible Light Radiation
	1992	
20.	Raksha Gupta	Photochemical Treatment of Industrial Coal Wastes-
	Prof. Anil Kumar	Photodecomposition of Indole
	1991	
21.	Anita Agarwal	Separation and Quantization of Halophenols and
	Prof. Anil Kumar	Related Compound by Gas Chromatography
	1990	

(N). Details of M.Sc. Project supervised (40):

ſ	S. No.	Name of the Student	Title of Project
	D. 1 10.	1 tame of the stadent	11000 01110 0000

	Name of the Supervisor(s) Year	
1.	Rajesh Prasad Verma Prof. Anil Kumar 2022	Synthesis of sulphur-doped reduced graphene oxide – its electrochemical characterization and sensing of mercury (II) ions on its surface
2.	Akash Prof. Anil Kumar 2022	Synthesis of phosphorous-doped reduced graphene oxide – its electrochemical characterization and sensing of dopamine and uric acid on its surface
3.	Vikas Yadav Prof. Anil Kumar 2021	Synthesis of activated carbon material derived from Eucalyptus leaves and their electrochemical applications.
4.	Priyanka Prof. Anil Kumar 2021	Synthesis of tryptophan-mediated hydrogels and their applications
5.	Charchita Gautam Prof. Anil Kumar 2020	Synthesis of carboxymethyl cellulose and 5'-adenosine monophosphate-mediated supramolecular porous hydrogels doped with Zn ²⁺ ion and silver nanoparticles
6.	Naveen Ojha Prof. Anil Kumar 2020	Reduction and functionalization of graphene oxide employing thiamine hydrochloride as a reducing agent - synthesis of N and S-doped reduced graphene oxide
7.	Sumit Kumar Yadav Prof. Anil Kumar 2019	Synthesis and Characterization of Cysteine-Capped MnS Nanoparticles – an Analsis of their Photophysical Behavior
8.	Narendra Kumar Yadav Prof. Anil Kumar 2019	Synthesis and Characterization of γ– Fe ₂ O ₃ Nanoparticles using Aloe-vera as a Capping Agent – Analysis of its Photocatalytic Activity
9.	Parveen Prof. Anil Kumar 2018	Synthesis and Characterization of Fe ₃ O ₄ -SiO2-ZnO Nanocomposites - Study of Adsorption and Photocatalytic Activity For Methylene Blue Degradation
10.	Arun Garg Prof. Anil Kumar 2017	Synthesis and Characterization of β-Cyclodextrin Coated Fe ₃ O ₄ Nanoparticles and Study of their Surface and Photocatalytic Behavior
11.	Sanjana Prof. Anil Kumar 2016	Synthesis of PVA-Coated Zerovalent Iron Nanoparticles and Study of their Catalytic Activity fopr the Reduction of 4-Nitrophenol.
12.	Kriti Seth Prof. Anil Kumar 2015	Synthesis of MCM-41 – Its Use as a Support for the Preparation of CdS Nanoparticles
13.	Sneha Paul Prof. Anil Kumar 2014	Synthesis and Characterization of Polyvinyl Alcohol Coated γ– Fe ₂ O ₃ Nanoparticles
14.	Moni Kumari Gupta Prof. Anil Kumar 2012 (M.Sc. Integrated)	Synthesis of Nanohydroxyapetite- A Study of Its Interaction with Elastin
15.	Venkatesh Tunuguntla Dr. Anil Kumar 2010	Synthesis and Characterization of Manganese Ferrite Nanoparticles by Non- Hydrolytic Sol- Gel Process

16.	Pankaj Kumar Choubey Dr. Anil Kumar 2008	Microwave Assisted Synthesis of Zinc Oxide Nanoparticles.
17.	Dibyendu Kumar Das Dr. Anil Kumar 2007	Synthesis and Characterization of TiO ₂ Nanoparticles
18.	Debashree Das Dr. Anil Kumar 2005	HPLC Analysis of Some Fullerenes in Carbon Soot
19.	Aarti Dr. Anil Kumar 2004	Synthesis and Physicochemical Properties of Colloidal Iron Oxide
20.	Mohammad Ilyas Dr. Anil Kumar 2003	Kinetics of Oxidation of Tartaric Acid by Diperiodatoargentate (III) Ion
21.	Amar Deep Prof. Anil Kumar 2002	Kinetics of Oxidation of Benzyl Alcohol by Diperiodato- Argentate (III) Ion
22.	Ila Dharmsaktu Dr. Anil Kumar 2002	Photophysical Properties of Lead Sulphide Particles
23.	Arvind Kumar Gejwal Dr. Anil Kumar 2001	Kinetics of Oxidation of N- Propylamine by Diperiodato- Argentate (III) Ion
24.	Virendra singh Dr. Anil Kumar 2000	HPLC Separation of Certain Purines, Pyrimidines and Tryptophan
25.	Vijender Kumar Prof. Anil Kumar 1999	Kinetics of Oxidation of Acetone by Diperiodato- Argentate (III) Ion
26.	Sanjeev Sharma Prof. Anil Kumar 1998	Effect of Doping of Doping of Fe ²⁺ and Fe ³⁺ on the Photocatalytic Activity of TiO ₂ for the Oxidation of 1,2- Ethanediol
27.	Amit Kaushik Prof. Anil Kumar 1997	Colloidal CdS- Sensitized Photochemical Reaction of Indole-3-Acetic Acid
28.	Minakshi Verma Dr. Anil Kumar 1997	Kinetics of Oxidation of Succinic Acid by Diperiodato Argentate (III)
29.	Sanjay Gupta Prof. Anil Kumar 1996	Chromatographic Separation of Indoles and related compounds
30.	Charu Arora Prof. Anil Kumar 1995	Kinetics of Oxidation of Alcohols by Bis (Periodato) Argentate (III)
31.	Sucheta Sangawar Prof. Anil Kumar 1994	Synthesis of Composite Semiconductor (CdS/PhS) Particles and Study of their Physical Properties
32.	Alok Gupta Prof. Anil Kumar 1993	Reaction of Tetrahydroxoargentate (III) Ion with 1-Napthylamine.

33. A.S.R. Prasad Light Induced Reaction	ions of 1-Napthylamine Using
Prof. Anil Kumar Cadmium Sulphide as	s a Photocatalyst
1993	
	hemical Behaviour of Silver (II)
Dr. Anil Kumar Phenanthroline Comp	lexes.
1992	
	nescence Property of Cadmium
Prof. Anil Kumar Sulphide in Presence	of Aromatic Amines and their
1991 Photocatalytic Reaction	ons
36. Meher Bala Lalit Effect on Photolumin	nescence of Zinc Sulphide by
Prof. Anil Kumar Different Metal Ions	
1990	
37. Anumolu Anand Kumar Mechanism of Reaction	on of Ag (III) Species With Some
Prof. Anil Kumar Organics	
1989	
38. Archana Separation of Aromat	tic Amines Phenols and Related
Prof. Anil Kumar Compounds by HPLC	
1989	
39. Prasanna Kumary M.N. The Redox Reactions	s and Stabilisation of Unusual
Prof. Anil Kumar Valency States of Met	tal
1985	
40. Arunan. K. Physico- Chemical St	tudies of Few Transitions Metal
Prof. Anil Kumar Complexes	
1984	

(O). **Any other Information** (about 500-600 words):

I have been among the early contributors on nanoscience/nanotechnology in India, who has initiated research in this area, as is also evidenced from our published research work/presentations/proposals submitted to DST, New Delhi. Our first research project on these systems was sanctioned as early as in 1985 by DST vide letter D.O. No. 23(1P-20)/84 dated Dec. 10, 1985, but could not be taken up at that time as I received an offer to join as a Guest Scientist at Hahn-Meitner-Institut, Germany with pioneering Radiation Chemist, Prof. A. Henglein on radiation chemical aspects of nanomaterials and worked there till 1988. Thereafter, we initiated work on synthesis and photochemistry of metal and semiconductor nanosystems at IIT Roorkee mainly through projects funded by the DST, New Delhi. Our research work on these as well as earlier systems was recognized by *The National Academy of Sciences, Allahabad, India* and was Elected as Fellow of this prestigious academy in 2003.

Over the years, we have addressed a number of issues pertaining to research on nanomaterials and contributed immensely to their synthetic protocols. Apart from these, I have been instrumental at IIT Roorkee in establishing a Centre of Excellence–Nanotechnology and also introduced a new teaching program for M.Tech. (Nanotechnology), which is still running successfully.

Lately, increasing environmental issues have necessitated to develop newer materials following *greener protocols*. In this context, during last one and a half decade our research has focused on

developing greener/biocompatible nanohybrids and integrated nanostructures with enhanced multifunctional features, addressing some environmental issues. Specifically, biopolymers and their components/ other biocompatible molecules have provided the novel capping agent(s) for growing different greener nanohybrids of semiconductors (II-VI/IV-VI /iron oxide(s)/oxyhydroxide(s) semiconductors/metal(s)) with 1D / 2D / 3D / porous nano-architectures. These researches include semiconductor(s)/metal(s) and their nanohybrids with excellent photophysical/ photochemical, catalytic behavior as well as designing of smart hydrogels.

In recent years, we have fabricated some newer electrode materials, viz. ultra-thin / a few layer(s) thick N-functionalized reduced graphene oxide (rGO) sheets, nanoribbons, and Ag-coated rGO, employing mild/environmental friendly reducing agents for the reduction of GO in aqueous medium for devising efficient supercapacitors. Lately, we have succeeded in extending the potential window of symmetric supercapacitor to fairly high value of 2.5 V with significantly high energy density@power density. These systems exhibited better conductivity with fairly high value of specific capacitance at higher current densities. Water-in-Salt like electrolyte has further enhanced the cell voltage to remarkably high at 2.7 V. A patent on enhanced features of these materials has been filed three years back and last year on their sensing capabilities. This work has been identified by the prestigious Confederation of Indian Industry (CII) among the innovations from IIT Roorkee during 2021. We also got one patent granted in 2022 on the related work.

Most of our work in the area of nanoscience/nanotechnology is published in *International*Journals of repute with an average impact factor of > 5.7, indicating the importance of our work in

the context of current scientific importance. Out of 22 Ph.D. students, I have supervised so far, 18

students have carried out their research on nanosystems including 2 students in the broad area of

present ongoing work.

In our ongoing research, we aim to develop innovative functionalized greener nanostructures as electrode material(s) and optimization of their electrochemical performance in aqueous electrolyte(s) to fabricate high-voltage supercapacitor to act as efficient energy storage device(s). Besides, being environmentally benign and functionalized, these nanohybrids are also expected to be suitable for selective electrochemical sensing with lower limit of detection, hydrogen storage and electro-catalytic applications.
