CURRICULUM VITAE

Name: Sumanta Sarkhel, Ph.D. (h-index: 10)

Scopus Author Profile: https://www.scopus.com/authid/detail.uri?authorId=22981859800

Google Scholar Profile: https://scholar.google.com/citations?user=UotPqsMAAAAJ&hl=en

ResearchGate Profile: https://www.researchgate.net/profile/Sumanta_Sarkhel

ORCID Profile: https://orcid.org/0000-0001-5980-2612

Institute Profile: https://ph.iitr.ac.in/~PH/Sumanta_Sarkhel

Research Group Webpage: https://allsky.iitr.ac.in

Present Position: Associate Professor in the Department of Physics and Joint Faculty in the Centre for Space Science and Technology, Indian Institute of Technology Roorkee, India

Address for Correspondence

Present Address

Sumanta Sarkhel
Department of Physics
Indian Institute of Technology Roorkee
Roorkee – 247667
Uttarakhand
INDIA

Email: sarkhel@ph.iitr.ac.in

sumantasarkhel@gmail.com

Phone: +91-1332-284817

Personal Data

Nationality: Indian Gender: Male

Place of Birth: Santiniketan, India

Date of Birth: 13 January 1982

Permanent Address

Sumanta Sarkhel Gurupalli (South) Santiniketan – 731235 West Bengal INDIA

Academic Records

Degree	University/Institute	Year	Marks	Subjects
Ph.D.	Physical Research Laboratory, Ahmedabad, India (<i>Degree Awarded by</i> Mohan Lal Sukhadia University, Udaipur, India)	2011		Science with specialization in Atmospheric and Space Physics
M.Sc.	Visva-Bharati, Santiniketan, India	2005	65.72 %	Physics with specialization in Particle Physics
B.Sc. (Hons.)	Visva-Bharati, Santiniketan, India	2003	75.70 %	Physics with Mathematics and Chemistry

Additional Academic Qualifications (National Level)

- JEST (Joint Entrance Screening Test) (2005) Percentile: 96.87%, All India Rank: 148.
- NET (National Eligibility Test) (CSIR JRF) (June-2005), Jointly conducted by CSIR-UGC (Council of Scientific and Industrial Research and University Grants Commission).
- GATE (Graduate Aptitude Test in Engineering) (2005), Percentile: 91.87%, All India Rank: 290.
- JEST (2006), Percentile: 95.46%, All India Rank: 125.

Academic Pursuit

DOCTORAL STUDENT: August, 2005–October, 2010 at Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad, India

Thesis Title: Upper Atmospheric Investigations using Radio and Optical Techniques

THESIS SUPERVISOR: Prof. Ramanathan Sekar

Submission Date: 13 October 2010

AWARD DATE: 09 April 2011

Research Experience

- Post doctoral fellow working with **Prof. Ramanathan Sekar** at Space and Atmospheric Sciences Division, **Physical Research Laboratory**, **Ahmedabad**, **India (October, 2010–May, 2011)**.
- Post doctoral fellow working with Prof. John D. Mathews at The Pennsylvania State University, Pennsylvania, USA and visiting scientist at Arecibo Observatory, Arecibo, Puerto Rico, USA (May, 2011–August, 2013).
- Research Associate at The Pennsylvania State University, Pennsylvania, USA and visiting scientist at Arecibo Observatory, Arecibo, Puerto Rico, USA (August, 2013–February, 2014).
- Post doctoral Researcher working with **Dr. Jeong-Han Kim** and **Dr. Geonhwa Jee** at Korea Polar Research Institute, South Korea (April, 2014–June, 2014).
- Visiting Scientist working with Prof. Jorge L. Chau at Leibniz-Institute of Atmospheric Physics (IAP), Germany (May–June, 2017).
- Assistant Professor, Indian Institute of Technology Roorkee, Roorkee, India (August, 2014–March, 2021).
- Associate Professor, Indian Institute of Technology Roorkee, Roorkee, India (March, 2021–Present).

Professional Activities

Editorial Assignments:

- Guest Associate Editor in *Frontiers in Astronomy and Space Sciences* (January, 2023 December, 2023)
- Editorial Board Members in *Discover Space* (October 2024 Present)

Reviewer Assignments (in SCI indexed journals):

- Advances in Space Research
- Annales Geophysicae
- Atmosphere
- Atmospheric Chemistry and Physics
- Earth, Planets and Space
- Geophysical Research Letters
- Journal of Atmospheric and Solar-Terrestrial Physics
- Journal of Geophysical Research Atmospheres

- Journal of Geophysical Research Space Physics
- Meteorology and Atmospheric Physics
- Space Weather

Memberships

- Life Member in Astronomical Society of India.
- Life Member in Indian Planetary Science Association.

Teaching Experience

- Plasma Physics, Integrated M.Sc. (3rd Year), Autumn Semester 2014-15 & 2015-16 in IIT Roorkee, India.
- Electromagnetic Theory, B.Tech. (1st Year), Spring Semester 2014-15 & 2017-18 in IIT Roorkee, India.
- Space Science and Technology, B.Tech. (3rd Year), Spring Semester 2015-16 & 2016-17 and Autumn Semester 2022-23 in IIT Roorkee, India.
- Mechanics, B.Tech. (1st Year), Autumn Semester 2016-17 & 2017-18 in IIT Roorkee, India.
- Advanced Atmospheric Physics, M.Sc. (2nd Year), Integrated M.Sc. (5th Year) & B.Tech. (4th Year), Autumn Semester 2018-19, 2019-20 & 2024-25 in IIT Roorkee, India.
- Weather Forecasting, M.Sc. $(2^{nd} \text{ Year}) \& \text{ Integrated M.Sc. } (5^{th} \text{ Year}), \& \text{ B.Tech. } (4^{th} \text{ Year}), Spring Semester 2018-19, 2019-20, 2020-21 & 2023-24 in IIT Roorkee, India.$
- Numerical Analysis and Computational Physics, B.Tech. $(3^{rd} \text{ Year}) \& \text{Integrated M.Sc.}$ (3^{rd} Year) , Autumn Semester 2020-21 & 2021-22 in IIT Roorkee, India.
- Numerical Analysis and Computational Techniques, M.Tech. (1st Year), Autumn Semester 2020-21 & 2021-22 in IIT Roorkee, India.
- Physics of Earth's Atmosphere, M.Sc. (1st Year) & Integrated M.Sc. (4th Year), Spring Semester 2021-22 & 2022-23 in IIT Roorkee, India.
- Modern Physics, BSMS (1st Year), Spring Semester 2023-24 in IIT Roorkee, India.
- Introduction to Space Science, M.Tech. (1st Year), Autumn Semester 2024-25 in IIT Roor-kee, India.
- Plasma and Space Physics, BSMS (4th Year), Autumn Semester 2024-25 in IIT Roorkee, India.

Administrative Experience

- Officer in-Charge in Atmospheric Physics Laboratory, 2016–2022, **Department of Physics**, **IIT Roorkee**, **India**.
- Member in Annual Reports & Website Committee, 2016–2023, **Department of Physics, IIT Roorkee, India**.
- Coordinator in M.Sc. & Int. M.Sc., 2018–19, Department of Physics, IIT Roorkee, India.
- Examination Coordinator, 2019–20, Department of Physics, IIT Roorkee, India.
- Faculty Advisor, 2020–2022, Department of Physics, IIT Roorkee, India.
- Coordinator in Int. M.Sc. 3rd year, 2022–2023, **Department of Physics, IIT Roorkee,** India.
- Coordinator in BS-MS 3rd year, 2023–Present, **Department of Physics**, **IIT Roorkee**, **India**.
- Member in Department Administrative Committee, 2023–Present, **Department of Physics**, **IIT Roorkee**, **India**.
- Prof. in-Charge in Stores and Purchases, 2023–Present, **Department of Physics**, **IIT Roor-kee**, **India**.
- Member in Department Write-off Committee, 2023–Present, **Department of Physics**, **IIT** Roorkee, India.

Master's Thesis Supervised

- M.Sc. Thesis entitled "Extraction of Gravity Wave Parameter using Airglow Images" by Yamini Khodia, IIT Roorkee, Spring-2015.
- Summer Project Dissertation for Kishore Vaigyanik Protsahan Yojana (KVPY) entitled "Investigation of Kelvin Helmholtz Instabilities in the Upper Mesosphere and Lower Thermosphere" by Jay Agarwal, IIT Roorkee, Autumn–2015.
- M.Sc. Thesis entitled "Investigation of Kelvin Helmholtz Instabilities in the Upper Mesosphere and Lower Thermosphere" by Jay Agarwal, IIT Roorkee, Spring-2016.
- M.Sc. Thesis entitled "Two-Dimensional Spectral Analysis of Mesospheric Airglow Images" by Apoorva Arora, IIT Roorkee, Spring—2016.
- M.Sc. Thesis entitled "Effect of Prandtl number and Reynolds number on the Lifetime of KH Billow" by Om Prakash Birda, IIT Roorkee, Spring-2017.
- M.Sc. Thesis entitled "Spectral Analysis of Planetary Atmospheres" by Vijay Singh, IIT Roorkee, Spring-2018.
- M.Sc. Thesis entitled "Image Analyses using multiwavelength Airglow Imager over Hanle, Leh Ladakh" by Aman Srivastava, IIT Roorkee, Spring—2019.

- M.Sc. Thesis entitled "Simultaneous meteor wind radar and optical airglow imaging observations over Kuhlungsborn(54.11° N, 11.77° E), Germany", by Rushith Kalakonda, IIT Roorkee, Spring— 2019.
- M.Sc. Thesis entitled "Study of Medium scale travelling ionospheric disturbances" by Govind Gaur, IIT Roorkee, Spring-2020.
- M.Sc. Thesis entitled "Stockwell transform on mesospheric bores" by Adityaveer Singh, IIT Roorkee, Spring—2020.
- M.Tech. Thesis entitled "Development of an Imaging Spectrograph for Space Based Observations of Planetary Atmospheric Emission" by Sandeep Kumar, IIT Roorkee, Spring—2020.
- M.Sc. Thesis entitled "Calculation of total electron content in ionosphere" by Aashish Tiwari, IIT Roorkee, Spring-2021.
- M.Sc. Thesis entitled "Exploration of Earth Plasma Using Imaging Techniques' by Ateesh Singh, IIT Roorkee, Spring-2022.
- M.Sc. Thesis entitled "Study of Ionospheric Irregularities over The Indian Himalayan Region' by Adarsh Agrawal, IIT Roorkee, Spring-2022.
- M.Sc. Thesis entitled "Investigation of Mars atmosphere using various satellite-based Measurements' by Praveen Ranolia, IIT Roorkee, Spring-2023.
- M.Tech. Thesis entitled "Spectroscopic Calibration of AOTF for Space Applications" by Shrikant Muduli, IIT Roorkee, Spring-2023.
- M.Sc. Thesis entitled "Investigation of Earth's Plasma Using All-Sky Airglow images" by Satyam Nirwal, IIT Roorkee, Spring-2024.
- M.Sc. Thesis entitled "Investigation of Planetary Atmosphere using Satellite Data" by Harshaa, IIT Roorkee, Spring-2024.
- M.Tech. Thesis entitled "Studies on the influence of solar flares on the Martian atmospheric emissions" by Ritika Sharma, IIT Roorkee, Spring-2024.

Doctoral Thesis Supervised (Ongoing/Awarded)

- Ph.D. Thesis entitled "Investigation of Upper Atmosphere using Optical Techniques" by Subarna Mondal, IIT Roorkee [Awarded in October 2021].
- Ph.D. Thesis entitled "Investigation of ionospheric F-region plasma irregularities using airglow imaging technique" by Rahul Rathi, IIT Roorkee [Awarded in March 2024].
- Ph.D. Thesis entitled "Investigation of the Martian atmosphere using remote sensing and in-situ measurements" by Lot Ram, IIT Roorkee [Ongoing] [Registered in July, 2022].
- Ph.D. Thesis entitled "Investigation of ionospheric plasma using optical and radio techniques" by Dipjyoti Patgiri, IIT Roorkee [Ongoing] [Registered in August, 2022].

- Ph.D. Thesis entitled "Investigation of Martian Atmospheric Species during Internal and External Forcings" by Aadarsh Raj Sharma, IIT Roorkee [Registered in April, 2024].
- Ph.D. Thesis entitled "Probing The Dusty Torus in Active Galactic Nuclei" by Ashutosh Tomar (Joint-Supervision with Dr. Suvendu Rakshit, ARIES, Nainital), IIT Roorkee [Registered in June, 2024].
- Ph.D. Thesis entitled *TBD* by Jeevan Upadhyaya, IIT Roorkee [Ongoing].
- Ph.D. Thesis entitled *TBD* by Mukesh Kumar (Joint-Supervision with Dr. Manish Naja, ARIES, Nainital), IIT Roorkee [Ongoing].
- Ph.D. Thesis entitled TBD by Mehta Harsh Jayeshkumar, IIT Roorkee [Ongoing]

Post-Doctoral Fellows Mentored

- Dr. Virendra Yadav, Ph.D. from Indian Institute of Geomagnetism, Mumbai, India (April, 2019–November, 2020) [Presently at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, Uttarakhand, India].
- Dr. Padma Gurram, Ph.D. from Indian Institute of Geomagnetism, Mumbai, India (March, 2021–December, 2021).
- Dr. Satarupa Chakrabarty, Ph.D. from Kalinga Institute of Industrial Technology, Bhubaneswar, India (September, 2022–April, 2024).
- Dr. Rahul Rathi, Ph.D. from Indian Institute of Technology Roorkee, Roorkee, India (April, 2024–July, 2024).

Sponsored Research Projects (Approved/Ongoing/Completed)

- Principal Investigator of an Extramural Research Grant (EMR/2016/000247) entitled "Investigation of Earth's Upper Atmosphere using Optical Imaging Techniques" [Total budget: INR 74.5 Lacs (7.45 Million) for the period of 2017-20] by Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India [Completed].
- Co-Principal Investigator of an Extramural Research Grant (EMR/2017/005188) entitled "Study of thermospheric and mesospheric cooling by using Nitric Oxide radiative emissions" [Total budget: INR 33.79520 Lacs (3.379520 Million) for the period of 2018-21] by Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India [Completed].
- Principal Investigator of a Core Research Grant (CRG/2021/002052) entitled "Investigation and characterization of ionospheric two-dimensional plasma structures over the geomagnetic low-mid latitude transition region using Artificial Intelligence and Machine Learning" [Total budget: INR 29.99 Lacs (2.999 Million) for the period of 2022-25] by Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India [Ongoing].

- Co-Principal Investigator of an Extramural Research Grant (CRG/2023/005106) entitled Predictive modeling of mesospheric and thermospheric radiative cooling by CO, and NO: A machine learning approach to understand the subtle connections of sunearth energetics [Total budget: INR 28.23 Lacs (2.823 Million) for the period of 2024-27] by Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India [Ongoing].
- Co-Principal Investigator of a payload "Upper-atmospheric Visible Airglow Spectral Imager (UrVASI)" onboard Indian twin satellites: Disturbed and quiet time Ionosphere-thermosphere System at High Altitudes (DISHA-H & DISHA-L) by Indian Space Research Organisation, India [Approved by ISRO].
- Co-Principal Investigator of a payload "Venus Atmospheric Spectro-Polarimeter (VASP)" onboard Venus Orbiter Mission by Indian Space Research Organisation, India [Approved by ISRO].

Awards / Honors

- A paper entitled "On the role of collisions in the sodium airglow process" by Sarkhel et al. was awarded the Second Prize in 16th National Space Science Symposium (NSSS 2010) sponsored by Indian Space Research Organisation (ISRO) held at Rajkot, India.
- Principle author of a collaborative proposal (AGS 1241407; PIs: John D. Mathews, The Pennsylvania State University and Shikha Raizada, Arecibo Observatory, SRI International) entitled "Collaborative Research: New Directions in Optical-Instrument-Driven Aeronomy at Arecibo Observatory" is approved for full funding (Total budget: US\$ 759,643 for 5 years) by National Science Foundation (NSF), USA.

Invited Talks / Colloquia / Special Lectures

- "Identification of large scale billow-like structures in the neutral sodium layer over Arecibo" on 30 January, 2012 at Physical Research Laboratory, Ahmedabad, India.
- "New directions in understanding the origin of unusual structures in the MLT region using active and passive remote sensing techniques" on 10 February, 2014 at Physical Research Laboratory, Ahmedabad, India.
- "Upper atmospheric investigation using active and passive remote sensing techniques" on 08 May, 2014 at Chungnam National University, Daejeon, South Korea.
- "Physics in the Upper Atmosphere (Active and Passive Remote Sensing Techniques)" on 16 October, 2014 at Indian Physics Association (Roorkee Chapter), IIT Roorkee, India.
- "Physics in the Upper Atmosphere (Understanding the origin of unusual phenomena using active and passive remote sensing techniques)" on **08 July**, **2015** at **Indian Institute of Astrophysics**, **Bengaluru**, **India**.
- "Does Meteoric Metals Exist in the Martian Atmosphere?" on 24 May, 2016 at U. R. Rao Satellite Centre, Bengaluru, India.

- "Research in the Upper Atmosphere using Optical Remote Sensing Techniques" on **21 October 2019** at National Atmospheric Research Laboratory, Gadanki, India.
- "Planetary Aeronomy: Optical Emissions" on 28 April 2020 (Webinar conducted by Indian Space Research Organisation Bengaluru, India.)

Schools / Workshop / Conference / Symposium

- Attended International School on Atmospheric Radar (ISAR-NCU 2006), Chung-Li, Taiwan and delivered a talk entitled "Mesosphere-lower ionosphere investigations using Indian MST radar and optical techniques."
- Presented a paper entitled "Simultaneous sodium airglow and sodium lidar observations from Gadanki" by S. Sarkhel et al. in 15th National Space Science Symposium (NSSS 2008), Ooty, India.
- Presented a paper entitled "On the role of collisions in the sodium airglow process" by S. Sarkhel et al. in 16th National Space Science Symposium (NSSS 2010), Rajkot, India.
- Presented a paper entitled "Sodium Airglow Observations from India" by S. Sarkhel et al. in Asia Oceania Geosciences Society 2010, Hyderabad, India.
- Presented a paper entitled "Mesospheric Gravity Waves over Indian Regions using Sodium Airglow Measurements" by S. Sarkhel et al. in COSPAR Scientific Assembly 2010, Bremen, Germany.
- Presented a paper entitled "Identification of large scale billows-like structure in the neutral Na layer over Arecibo" by S. Sarkhel et al. in American Geophysical Union, Fall Meeting, 2011, San Francisco, USA.
- Presented a poster entitled "Penn State Airglow Imagers at Arecibo Observatory: Operation and Image Analyses" by S. Sarkhel et al. in CEDAR 2012, Santa Fe, USA.
- Presented a paper entitled "A study of an unusual event observed in the Na layer over Arecibo" by S. Sarkhel et al. in CEDAR 2012, Santa Fe, USA.
- Presented a paper entitled "New directions in understanding the origin of an unusual structure in the MLT region using active and passive remote sensing techniques" by S. Sarkhel et al. in KSSS Spring Meeting, 2014, South Korea.
- Presented a paper entitled "Investigation on Meteoric Metals in the Martian Atmosphere using Airglow Emissions" by S. Sarkhel in MOM Data Analysis Workshop (04-05 September, 2015), Physical Research Laboratory, Ahmedabad, India.
- Invited presentation entitled "Exploration of the Venus Atmosphere using Hyper-spectral imaging of Optical and Infrared emissions" by S. Sarkhel in Symposium on Vision & Explorations for Planetary Sciences in Decades 2020-2060 Brain Storming Session (8-10 November, 2017), Physical Research Laboratory, Ahmedabad, India.
- Presented a paper entitled "New directions in understanding the origin of an unusual structure in the sodium layer over Gadanki, India" by S. Sarkhel et al. in 15th International Symposium

- on Equatorial Aeronomy (ISEA-15) (22-26 October, 2018) at PRL, Ahmedabad, India.
- Presented a paper entitled "On the life-time of Kelvin-Helmholtz billows in the mesosphere and lower thermosphere region" by S. Sarkhel et al. in 20th National Space Science Symposium (NSSS) (NSSS-2019) (29-31 January, 2019) at Savitribai Phule Pune University, Pune, India.
- Presented a paper entitled "All-sky Airglow Imaging Observations of Terrestrial Upper Atmosphere from Hanle, Leh Ladakh, India"
 by S. Sarkhel et al.in 15th Quadrennial Solar-Terrestrial Physics Symposium (STP-15) (21 25 February 2022), A Virtual Event Hosted by Indian Institute of Geomagnetism (IIG), Navi Mumbai, India.
- Presented a paper entitled "Simultaneous Occurrence of Three Non-Interacting Characteristically Different Ionospheric Plasma Structures Over the Geomagnetic Low-Mid Latitude Transition Region" by S. Sarkhel et al. in 16th International Symposium on Equatorial Aeronomy (ISEA-16) (12-16 September, 2022) at Kyoto University, Uji, Japan.
- Presented a paper entitled "A case study on multiple self-interactions of MSTID bands: New insights" by S. Sarkhel et al. in European Geosciences Union 2023 (23–28 April 2023) at Vienna, Austria.
- Presented a paper entitled "Interaction between nighttime MSTID and mid-latitude field-aligned plasma depletion structure: First results from Hanle, India" [Invited Talk] by S. Sarkhel et al. in Asia Oceania Geosciences Society 20th Annual Meeting (AOGS 2023) (30 July 05 August 2023) at Singapore.

Lecture Series/Workshop/Conference Organized

- ARIES Lecture Series (A virtual event organized by Indian Physics Association (IPA), Roorkee Chapter, Physics and Astronomy Club, IIT Roorkee and in association with Department of Physics, IIT Roorkee), 04-28 December 2020.
- 40th Annual Meeting of the Astronomical Society of India (ASI-2022) (A hybrid conference organized in the campus of IIT Roorkee in association with ARIES, Nainital), 25-29 March 2022.
- One Day Workshop for Collaboration between IIT Roorkee and ARIES, Nainital, 17 January 2024.
- 2^{nd} Workshop on Space Weather Science and Opportunities & 3^{rd} Indian Space Weather Conference (ISWC-2024) (A workshop and conference organized in the campus of IIT Roorkee), 05-09 October 2024.

Papers Accepted/Published in Refereed Conferences/Journals

- 43. Evidence of potential thermospheric overcooling during the May 2024 geomagnetic superstorm, A. K. Ranjan, D. Nailwal, M. V. Sunil Krishna, A. Kumar, & S. Sarkhel, Journal of Geophysical Research: Space Physics, 129, e2024JA033148, 2024. https://doi.org/10.1029/2024JA033148
- 42. Investigation on the impact of solar flares on the Martian atmospheric emissions in the dayside near-terminator region: Case studies, L. Ram, R. Sharma, D. Rout, R. Rathi, S. Sarkhel*, *Journal of Geophysical Research: Planets*, 129, e2024JE008315 2024. https://doi.org/10.1029/2024JE008315
- 41. A Rare Simultaneous Detection of a Mid-Latitude Plasma Depleted Structure in O(1D) 630.0 and O(1S) 557.7 nm All-Sky Airglow Images on a Geomagnetically Quiet Night, D. Patgiri, R. Rathi, V. Yadav, D. Chakrabarty, M. V. Sunil Krishna, S. Kannaujiya, P. Pavan Chaitanya, A. K. Patra, Jann-Yenq Liu, S. Sarkhel*, Geophysical Research Letters, 51, e2023GL106900, 2024. https://doi.org/10.1029/2023GL106900
- 40. Seasonal variation in nighttime NO radiative cooling as observed by TIMED/SABER in lower thermosphere during solar maximum and solar minimum, A. K. Ranjan, M.V. Sunil Krishna, A. Kumar, D. Nailwal, S. Sarkhel, *Advances in Space Research*, 2024. https://doi.org/10.1016/j.asr.2024.06.040
- 39. Editorial: Advances in mesosphere and thermosphere dynamics, A. Guharay, S. Sarkhel, and I. Paulino, Front. Astron. Space Sci, 11:1418420, 2024. https://doi.org/10.3389/fspas. 2024.1418420
- 38. Influence of temperature changes and vertically transported trace species on the structure of MLT region during major SSW events, A. Kumar, M.V. Sunil Krishna, A. K. Ranjan, S. Bender, M. Sinnhuber, S. Sarkhel, J. Atmos. Sol.-Terr. Phys., 259, 2024. https://doi.org/10.1016/j.jastp.2024.106243
- 37. Optimizing deep learning inference at the edge for accurate detection of ionospheric plasma structures from all-sky airglow images, S. Chakrabarti, D. Patgiri, R. Rathi, G. Dixit*, M. V. Sunil Krishna, S. Sarkhel*, Advances in Space Research, 73, 2024. https://doi.org/10.1016/j.asr.2024.03.014
- 36. A case study on multiple self-interactions of MSTID bands: New insights, D. Patgiri, R. Rathi, V. Yadav, S. Sarkhel*, D. Chakrabarty, S. Mondal, M. V. Sunil Krishna, A. K. Upadhayaya, C. G. Vivek, S. Kannaujiya, S. Sunda, *Advances in Space Research*, 73, 2024. https://doi.org/10.1016/j.asr.2023.05.047
- 35. A case study of mesospheric frontal interaction and associated processes over the western Himalaya, S. Mondal*, A. Guharay*, S. Sarkhel*, M.V. Sunil Krishna, Martin G. Mlynczak, Advances in Space Research, 73, 2024. https://doi.org/10.1016/j.asr.2023.05.019
- 34. Unusual simultaneous manifestation of three non-interacting mid-latitude ionospheric plasma structures, R. Rathi, P. Gurram, S. Mondal, V. Yadav, S. Sarkhel*, M.V. Sunil Krishna, A. K. Upadhayaya, *Advances in Space Research*, 73, 2024. https://doi.org/10.1016/j.asr.2023.04.038

- 33. Martian M2 peak behavior in the dayside near-terminator ionosphere during interplanetary coronal mass ejections, L. Ram, D. Rout, R. Rathi, P. Withers, S. Sarkhel*, *Icarus*, 408, 115857, 2024. https://doi.org/10.1016/j.icarus.2023.115857
- 32. NO radiative cooling and ionospheric response to the HILDCAA events following geomagnetic storms, A. K. Ranjan, M. V. Sunil Krishna, A. Kumar, S. Sarkhel, D. Chakrabarty, & G. D. Reeves, *Journal of Geophysical Research: Space Physics*, 128, e2023JA032028, 2023. https://doi.org/10.1029/2023JA032028
- 31. Signature of Y-forking in ionogram traces observed at low-mid latitude Indian station, New Delhi, during the earthquake events of 2020: ionosonde observations, A. Bhardwaj, A. Gupta, Q. Ahmed, A. Singh, S. Gupta, S. Sarkhel, M.V. Sunil Krishna, D. Pallamraju, T. Pant and A.K. Upadhayaya, Front. Astron. Space Sci., 10:1170288, 2023. https://doi.org/10.3389/fspas.2023.1170288
- 30. A comparison of the impacts of CMEs and CIRs on the Martian dayside and nightside ionospheric species, L. Ram, D. Rout, R. Rathi, S. Mondal, S. Sarkhel*, J. Halekas, *Journal of Geophysical Research: Planets*, e2022JE007649, 128, 2023. https://doi.org/10.1029/2022JE007649
- 29. Aspects related to variability of radiative cooling by NO in lower thermosphere, TEC and O/N2 correlation, and diffusion of NO into mesosphere during the Halloween storms, Alok Kumar Ranjan, M.V. Sunil Krishna, Akash Kumar, S. Sarkhel, Gaurav Bharti, Stefan Bender, Miriam Sinnhuber, Advances in Space Research, 71, 2023. https://doi.org/10.1016/j.asr.2022.07.035
- 28. A case study on the interaction between MSTIDs' fronts, their dissipation and a curious case of MSTID's rotation over geomagnetic low-mid latitude transition region, R. Rathi, V. Yadav, S. Mondal, S. Sarkhel*, M. V. Sunil Krishna, A. K. Upadhayaya, S. Kannaujiya, P. Chauhan, Journal of Geophysical Research: Space Physics, 127, e2021JA029872, 2022. https://doi.org/10.1029/2021JA029872
- 27. A case study of a ducted gravity wave event over northern Germany using simultaneous airglow imaging and wind-field observations, S. Sarkhel*, Gunter Stober, Jorge L. Chau, S. M. Smith, C. Jacobi, S. Mondal, Martin G. Mlynczak, and James M. Russell III, *Annales Geophysicae*, 40, 179–190, 2022. https://doi.org/10.5194/angeo-40-179-2022
- 26. Signature of a mesospheric bore in 557.7 nm airglow emission using all-sky imager at Hanle (32.7oN, 78.9oE), A. Guharay*, S. Mondal, S. Sarkhel*, M. Sivakandan, M. V. Sunil Krishna, Advances in Space Research, 69, 2022. https://doi.org/10.1016/j.asr.2021.12.006
- 25. Evidence for the in-situ generation of plasma depletion structures over the transition region of geomagnetic low-mid latitude, M. Sivakandan, S. Mondal, S. Sarkhel*, D. Chakrabarty, M. V. Sunil Krishna, A. K. Upadhayaya, A. Shinbori, T. Sori, S. Kannaujiya, and P. K. Champati Ray, Journal of Geophysical Research: Space Physics, 126, e2020JA028837, 2021. https://doi.org/10.1029/2020JA028837
- 24. A case study of a thermally ducted undular mesospheric bore accompanied by ripples over the western Himalayan region, S. Mondal, M. Sivakandan, S. Sarkhel*, M. V. Sunil Krishna, Martin G. Mlynczak, James M. Russell III, and G. Bharti, Advances in Space Research, 68, 1425-1440,

- 2021. https://doi.org/10.1016/j.asr.2021.03.026
- 23. Interaction between nighttime MSTID and mid-latitude field-aligned plasma depletion over the transition region of geomagnetic low-mid latitude: First results from Hanle, India; V. Yadav, R. Rathi, G. Gaur, S. Sarkhel*, D. Chakrabarty, M. V. Sunil Krishna, P. Pavan Chaitanya, A. K. Patra, R. K. Choudhary, T. K. Pant, A. K. Upadhayaya, Journal of Atmospheric and Solar-Terrestrial Physics, 217, 105589, 2021. https://doi.org/10.1016/j.jastp.2021.105589
- 22. Evidence for simultaneous occurrence of periodic and single dark band MSTIDs over geomagnetic low-mid latitude transition region; R. Rathi, V. Yadav, S. Mondal, S. Sarkhel*, M. V. Sunil Krishna, A. K. Upadhayaya, *Journal of Atmospheric and Solar-Terrestrial Physics*, 215, 105588, 2021. https://doi.org/10.1016/j.jastp.2021.105588
- Multi-Instrument Observations of MSTIDs: 1. ISR and GPS TEC Results; Ross Dinsmore, J. D. Mathews, Anthea Coster, R. M. Robinson, S. Sarkhel, Philip J. Erickson, Julio Urbina, Journal of Atmospheric and Solar-Terrestrial Physics, 213, 105515, 2021. https://doi.org/10.1016/j.jastp.2020.105515
- 20. A unique case of complex interaction between MSTIDs and mid-latitude field-aligned plasma depletions over geomagnetic low-mid latitude transition region; V. Yadav, R. Rathi, S. Sarkhel*, D. Chakrabarty, M. V. Sunil Krishna, A. K. Upadhayaya, Journal of Geophysical Research: Space Physics, 126, e2020JA028620, 2021. https://doi.org/10.1029/2020JA028620
- 19. Mid-latitude Spread-F structures over the geomagnetic low-mid latitude transition region: An observational evidence; M. Sivakandan, S. Mondal, S. Sarkhel*, D. Chakrabarty, M. V. Sunil Krishna, P. Pavan Chaitanya, A. K. Patra, R. K. Choudhary, T. K. Pant, A. K. Upadhayaya, T. Sori., Journal of Geophysical Research: Space Physics, 125, 2020. https://doi.org/10.1029/2019JA027531
- 18. Investigation of spatio-temporal morphology of plasma bubbles based on EAR observations; L.M. Joshi, L.-.C. Tsai, S.-.Y. Su, Y. Otsuka, T. Yokoyama, M. Yamamoto, S. Sarkhel, K. Hozumi, C.-.H. Lu, *Journal of Geophysical Research: Space Physics*, 124, 10549–10563, 2019. https://doi.org/10.1029/2019JA026839
- 17. Allsky Airglow Imaging Observation from Hanle, Leh Ladakh, India: Image Analyses and First Results; S. Mondal, A. Srivastava, V. Yadav, S. Sarkhel*, M. V. Sunil Krishna, Yamini K. Rao, Vir Singh, Advances in Space Research, 64, 1926-1939, 2019. https://doi.org/10.1016/j.asr.2019.05.047
- 16. On the long lasting "C-type" structures in the sodium lidargram: The lifetime of Kelvin-Helmholtz billows in the mesosphere and lower thermosphere region; S. Mondal, S. Sarkhel*, Jay Agarwal, D. Chakrabarty, R. Sekar, Tao Yuan, Xuguang Cai, Alan Z. Liu, Satonori Nozawa, Norihito Saito, Takuya D. Kawahara, Martin G. Mlynczak, James M. Russell III, Journal of Geophysical Research: Space Physics, 124, 3110–3124, 2019. https://doi.org/10.1029/2019JA026630
- 15. A Review on the Upper Atmospheric Sodium Observations from India: Insights; S. Sarkhel*, S. Mondal, R Sekar, D. Chakrabarty, and S. Sridharan, *Advances in Space Research*, 63, 3568-3585, 2019. https://doi.org/10.1016/j.asr.2019.02.019

- 14. Multi-Instrument Observations of MSTIDs and Source Determination; Ross Dinsmore, J. D. Mathews, Anthea Coster, and S. Sarkhel, 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 2018, pp. 1-4., IEEE Xplore, 2018. https://doi.org/10.23919/URSI-AT-RASC.2018.8471550
- 13. The ionospheric impact of a CME driven sheath region over Indian and American sectors in the absence of a typical geomagnetic storm; Diptiranjan Rout, D. Chakrabarty, S. Sarkhel, R. Sekar, B. G. Fejer, G. D. Reeves, Atul S. Kulkarni, Nestor Aponte, Mike Sulzer, John D. Mathews, Robert B. Kerr, and John Noto, *Journal of Geophysical Research: Space Physics*, 123, 4298–4308, 2018. https://doi.org/10.1029/2018JA025334
- 12. Erratum to: Dependence of mesospheric Na and Fe distributions on electron density at Arecibo; Shikha Raizada, Craig Tepley, Qihou Zhou, S. Sarkhel, John Mathews, Nestor Aponte, Ilgin Seker, Robert Kerr, Edvier Cabassa, Earth Planets Space, 67:202, 2015. https://doi.org/10.1186/s40623-015-0371-3
- 11. Dependence of mesospheric Na and Fe distributions on electron density at Arecibo; Shikha Raizada, Craig Tepley, Qihou Zhou, S. Sarkhel, John Mathews, Nestor Aponte, Ilgin Seker, Robert Kerr, Edvier Cabassa, Earth Planets Space, 67:146, 2015. https://doi.org/10.1186/s40623-015-0322-z
- Erratum to: A case study on occurrence of an unusual structure in the sodium layer over Gadanki, India; S. Sarkhel*, Mathews JD, Shikha R, Ramanathan S, Dibyendu C, Amitava G, Geonhwa J, Jeong-Han K, Kerr RB, Geetha R, Sundararajan S, Qian W, Mlynczak MG, Russell JM, Earth Planets Space, 67:145, 2015. https://doi.org/10.1186/s40623-015-0276-1
- 9. A case study on occurrence of an unusual structure in the sodium layer over Gadanki, India; S. Sarkhel*, John D. Mathews, Shikha Raizada, R Sekar, D. Chakrabarty, A. Guharay, Geonhwa Jee, Jeong-Han Kim, Robert B. Kerr, Geetha Ramkumar, S. Sridharan, Qian Wu, Martin G. Mlynczak, and James M. Russell III, Earth, Planets and Space, 67:19, 2015. https://doi.org/10.1186/s40623-015-0183-5
- 8. Investigation of the intraseasonal oscillations over a Brazilian equatorial station: a case study; A Guharay, P. P. Batista, B. R. Clemesha, S. Sarkhel, and R. A. Buriti, *Earth, Planets and Space*, 66:145, 2014. https://doi.org/10.1186/s40623-014-0145-3
- 7. Response of the extra-tropical middle atmosphere to the September 2002 major stratospheric sudden warming; A. Guharay, P. P. Batista, B. R. Clemesha, S. Sarkhel, Adv. Space Res., 53, 257-265, 2014. https://doi.org/10.1016/j.asr.2013.11.002
- 6. On the variability of the terdiurnal tide over a Brazilian equatorial station using meteor radar observations; A. Guharay, P. P. Batista, B. R. Clemesha, S. Sarkhel, R. A. Buriti, J. Atmos. Sol. Terr. Phys., 104, 87-95, 2013. https://doi.org/10.1016/j.jastp.2013.08.021
- 5. Identification of large scale billows-like structure in the neutral Na layer over Arecibo, S. Sarkhel*, S. Raizada, J. D. Mathews, S. M. Smith, C. A. Tepley, F. J. Rivera, S. A. Gonzalez, *J. Geophys. Res.*, 117, A10301, 2012. https://doi.org/10.1029/2012JA017891
- 4. Investigation on Mesospheric Gravity Waves over Indian Low Latitude Stations using Sodium Airglow Observations and A Few Case Studies Based on Thermal and Wind Structures; S.

- Sarkhel*, R. Sekar, D. Chakrabarty, and A. Guharay, *J. Atmos. Sol. Terr. Phys.*, 86, 41-50, 2012. https://doi.org/10.1016/j.jastp.2012.06.008
- 3. A Case Study on the Possible Altitude-Dependent Effects of Collisions on Sodium Airglow Emission; S. Sarkhel*, R. Sekar, D. Chakrabarty, and S. Sridharan, *J. Geophys. Res.*, 115, A10306, 2010. https://doi.org/10.1029/2010JA015251
- Simultaneous sodium airglow and lidar measurements over India: a case study; S. Sarkhel*, R. Sekar, D. Chakrabarty, R. Narayanan, and S. Sridharan, J. Geophys. Res., 114, A10317, 2009. https://doi.org/10.1029/2009JA014379
- 1. Identifications of active fossil bubbles based on coordinated VHF radar and airglow measurements; R. Sekar, D. Chakrabarty, S. Sarkhel, A. K. Patra, C. V. Devasia and M. C. Kelley, *Ann. Geophys.*, 25, 2099-2102, 2007. https://doi.org/10.5194/angeo-25-2099-2007

Other Publications

- 1. The Coordinated Sodium Airglow and Lidar Observations over India; **S. Sarkhel**, R. Sekar, D. Chakrabarty, R. Narayanan, and S. Sridharan, Abstract # SA33A-02, *American Geophysical Union*, Spring Meeting, 2009.
- 2. Sodium Airglow Emission from Terrestrial Mesosphere; **Sumanta Sarkhel**, *PRL News, Volume* 25, Issue 1, July 2010.
- 3. Mesospheric Gravity Waves over Indian Regions using Sodium Airglow Measurements; S. Sarkhel, R. Sekar, D. Chakrabarty, R. Narayanan, 38th COSPAR Scientific Assembly. Held 18-15 July 2010, in Bremen, Germany, p.5, 2010.
- 4. Observations of the Intra-seasonal oscillations in the tropical MLT and lower atmosphere; A Guharay, S. Sarkhel, PP Batista, AGU Fall Meeting 2011, abstract id. A51A-0205, 2011.
- 5. Lidar observations of mesospheric metals and electron densities over Arecibo; S Raizada, B Williams, J Friedman, S. Sarkhel, C Tepley, Q Zhou, N Aponte, 39th COSPAR Scientific Assembly. Held 14-22 July 2012, in Mysore, India. Abstract F3.1-5-12, p.1557, 2012.
- Characteristics of Mesospheric Na Distribution over Arecibo, Puerto Rico, S Raizada, E Garcia, C Garnett Marques Brum, S Sarkhel, E Cabassa-Miranda, Q Zhou, CA Tepley, AGU Fall Meeting 2013, abstract id.SA11B-1927, 2013
- Influence of Sporadic E layers on Mesospheric Na and Fe Layers over Arecibo; S Raizada, CA Tepley, Q Zhou, S Sarkhel, JD Mathews, N Aponte, R Kerr, AGU Fall Meeting 2014, abstract id.SA41A-4049, 2014.

Research Interests

My research interest encompasses the investigations of upper atmosphere using mainly ground-based nighttime airglow photometer and imager. The airglow data are supplemented by data from VHF radar, Na resonant lidar and satellite borne measurements.

- To measure the Na D₂/D₁ airglow intensity ratio, investigate its variability and its impact on sodium airglow emission process.
- To measure the Earth's airglow emissions onboard Indian twin satellites: Disturbed and quiet time Ionosphere-thermosphere System at High Altitudes (DISHA-H & DISHA-L).
- Investigating planetary airglow emissions using ground based astronomical optical telescope.
- Investigating the generation of ubiquitous omnipresent Medium Scale Travelling Ionsopheric Disturbances (MSTIDs) using airglow imager.
- Investigation of meteoroid ablation processes and associated phenomena using the airglow imager at different wavelengths.
- Investigation of breaking of gravity waves near mesopause region using multi-wavelength airglow imager and satellite borne measurements and characterize secondary waves.
- Investigation of neutral instability processes at mesosphere lower thermospheric region using resonance lidars.

Other Proficiencies

- Was an active member of a team which has the experience to conceptualize and design different state-of-the-art optical instruments such as nighttime airglow photometers and spectrometers. An automatic multi-wavelength airglow imager is also designed and fabricated at Physical Research Laboratory (PRL), Ahmedabad, India in order to characterize mesospheric gravity waves in three dimensions along with Na lidar at Gadanki. It consists of several achromatic lens systems, a programmable motorized filter wheel with five filter slots and a cooled CCD detector. The fish-eye lens being an essential part of the lens system decides the field-of-view and the rays are channelled through a field lens decreasing the divergence. A collimating lens further reduces the divergence of the rays in order to pass through the interference filter. The interference filter selects the desired wavelength of emission and the filtered signals are further focused on the high sensitive CCD pixels using camera lens. The whole imaging system is completely automatic and the interfacing between the motorized filter wheel and the CCD camera was carried out in our laboratory. The imager is equipped with the capability of capturing signals at different wavelengths with different exposure times using a software program made in-house.
- Experience in operating in operating airglow imagers at the Arecibo Observatory (18.35° N, 66.75° W), Puerto Rico, USA operated by Penn State University, Pennsylvania, USA and analyzing near-real time raw images. An image processing module has been developed to processes those raw images into geographically calibrated unwarped images. This image processing module consists of several MATLAB subroutines developed specifically for processing those images which are designed for geographical calibration of images using standard star catalogue at 557.7 nm and 630.0 nm, and 777.4 nm wavelength. In addition, the module also calculates north-south and east-west keograms and movies for each filter. As a part of developing the image processing module, a web interface has also been designed for posting those process data online that can be accessed online to all users in near real-time. The web interface allows users to choose to view/download movies/keograms at any filter.

Also has significant experience of processing raw images of another airglow imager at the King Sejong Station, Antarctica (62.22° S, 58.78° W) that is operated by Korea Polar Research Institute, South Korea.

- Recently, we have installed an allsky multi-wavelength imaging system (557.7 and 630.0 nm filters) for the investigation of Earth's upper atmosphere at the Indian Astronomical Observatory (IAO), Hanle, Ladakh (32.78° N, 78.96° E). The observatory is operated by the Indian Institute of Astrophysics, Bengaluru which is situated at 4200 meter altitude from mean sea level (at ~600 mb pressure level). The imaging system was procured under DST-SERB project (EMR/2016/000247). The purpose of the allsky imaging system is to understand the optical emissions from the Earth's upper atmosphere and its connection with the plasma irregularities at the ionosphere over the Himalayan region. The imager is installed inside a small (3 m × 2 m × 2 m) weather proof PUF container which was also constructed during installation of the imager. We have named of the building as "High Altitude Optical Aeronomy Observatory". We got the first light on 12 June, 2018 evening. The imaging system is fully automatic and acquire data during moon-less nights. This is the first of its kind of instrument that is ever installed at such an altitude in India. A web interface has been developed (https://allsky.iitr.ac.in) that allows users to view quick-look image data for both the filters for any given observational night.
- Experience in handling Na resonance lidar at Arecibo Observatory, Puerto Rico, USA and analyzing raw data to derive neutral Na atom concentration.
- Can work in both Windows and UNIX environments.
- Knowledge in MATLAB programming. Brief knowledge in PERL and SHELL script.

I hereby declare that the above information is correct to the best of my knowledge.

Date: December 5, 2024 Sumanta Sarkhel

Place: Roorkee, India