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Normal stress differences, their origin and
constitutive relations for a sheared granular fluid
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The rheology of the steady uniform shear flow of smooth inelastic spheres is analysed
by choosing the anisotropic/triaxial Gaussian as the single-particle distribution
function. An exact solution of the balance equation for the second-moment tensor of
velocity fluctuations, truncated at the ‘Burnett order’ (second order in the shear rate),
is derived, leading to analytical expressions for the first and second (N1 and N2)
normal stress differences and other transport coefficients as functions of density
(i.e. the volume fraction of particles), restitution coefficient and other control
parameters. Moreover, the perturbation solution at fourth order in the shear rate
is obtained which helped to assess the range of validity of Burnett-order constitutive
relations. Theoretical expressions for both N1 and N2 and those for pressure and
shear viscosity agree well with particle simulation data for the uniform shear flow of
inelastic hard spheres for a large range of volume fractions spanning from the dilute
regime to close to the freezing-point density (ν ∼ 0.5). While the first normal stress
difference N1 is found to be positive in the dilute limit and decreases monotonically
to zero in the dense limit, the second normal stress difference N2 is negative and
positive in the dilute and dense limits, respectively, and undergoes a sign change at
a finite density due to the sign change of its kinetic component. It is shown that
the origin of N1 is tied to the non-coaxiality (φ 6= 0) between the eigendirections of
the second-moment tensor M and those of the shear tensor D. In contrast, the origin
of N2 in the dilute limit is tied to the ‘excess’ temperature (Tex

z = T − Tz, where Tz
and T are the z-component and the average of the granular temperature, respectively)
along the mean vorticity (z) direction, whereas its origin in the dense limit is tied to
the imposed shear field.

Key words: complex fluids, granular media, rheology

1. Introduction
Granular materials, a collection of macroscopic particles, are ubiquitous in nature

(avalanche, debris flows, planetary rings, etc.) and also very important in many
chemical processing industries. At rest, the ‘dry’ granular materials (for which the
effect of interstitial fluid can be neglected) behave like a solid, having a compressive
strength but no tensile strength, and hence dubbed a ‘peculiar’ solid. On the other
hand, a collection of particles can flow like a liquid as in an hour glass or behave

† Email address for correspondence: meheboob@jncasr.ac.in
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FIGURE 1. (Colour online) Variations of the first (N1) and second (N2) normal stress
differences with particle volume fraction (ν) in the uniform shear flow of smooth inelastic
spheres; the symbols represent the particle dynamics simulation data of Alam & Luding
(2005) for a restitution coefficient of e=0.9. The solid lines denote the present anisotropic
moment theory as discussed in §§ 5.3 and 5.5.

like a gas under strong shaking (Forterre & Pouliquen 2008; Rao & Nott 2008).
In the case of a granular gas (Goldhirsch 2003; Brilliantov & Pöschel 2004), the
particle collisions are inelastic, leading to the dissipation of the kinetic energy
of colliding particles. The inelastic dissipation is known to be the progenitors of
many interesting properties of a granular fluid, and is also responsible for the loss
of ‘microscopic’ reversibility at the level of Liouville and Boltzmann equations
that calls for non-standard statistical mechanics (Jenkins & Richman 1985; Sela &
Goldhirsch 1998; Garzo & Dufty 1999; Lutsko 2005; Rongali & Alam 2014) to
develop coarse-grained theories for flowing granular matter.

Unlike normal fluids, however, the granular fluids possess prominent non-Newtonian
properties, like the normal stress differences which can be of the order of its isotropic
pressure in a dilute granular gas (Walton & Braun 1986; Campbell 1989; Sela &
Goldhirsch 1998; Alam & Luding 2003a,b, 2005; Santos, Garzo & Dufty 2004;
Montanero et al. 2006; Saha & Alam 2014) in contrast to its infinitesimal magnitude
in a molecular gas. Figure 1, taken from Alam & Luding (2005), displays the
variations of two normal stress differences (N1 and N2) with the volume fraction of
particles; the restitution coefficient is e= 0.9. The scaled first normal stress difference
(N1 = (Pxx − Pyy)/p, where Pαα is the diagonal component of the stress tensor along
the α-direction, and p is the mean pressure) is positive and maximal in the dilute
limit (ν→ 0) and decreases in magnitude with increasing density. On the other hand,
the second normal stress difference (N2= (Pyy−Pzz)/p) is negative in the dilute limit,
increases with increasing density, becomes positive at a critical density νcr ≈ 0.13
and increases monotonically thereafter. Alam & Luding (2005) also postulated a
frame-indifferent phenomenological constitutive model for granular fluids to predict
the sign reversals of both first and second normal stress differences. Returning to
figure 1, we can conclude that the normal stress differences must be incorporated in
the theoretical modelling of a granular fluid so that the theory remains valid from
the dilute to the dense limit.

The studies on normal stresses have a long and rich history in the area of particulate
suspensions (Bagnold 1954; Brady & Morris 1997; Singh & Nott 2003; Guazzelli
& Morris 2011), with the early works being carried out in the dense regime
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of such systems. More recent experimental work (Boyer, Pouliquen & Guazzelli
2011; Couturier et al. 2011) on the behaviour of normal stresses in non-Brownian
suspensions has generated renewed interest to understand the non-Newtonian rheology
of suspensions and dense granular media via simulation and experiment (Lerner,
Düring & Wyart 2012; Trulsson, Andreotti & Claudin 2012; Dbouk, Lobry & Lemaire
2013; Denn & Morris 2014). Even after 60 years of research starting from Bagnold
(1954), there remain debates about the sign of two normal stresses in the dense
regime of a suspension. In any case, studying the non-Newtonian behaviour is also
important since the normal stresses themselves are responsible for many interesting
flow-features (e.g. rod climbing or Weissenberg effect, die swelling, secondary flows,
etc.) in non-Newtonian fluids. Moreover, it is also known from the literature on
polymeric fluids and suspensions that the non-Newtonian flows can support additional
instability modes whose origin can solely be tied to normal stresses. From the
modelling viewpoint, the presence of large normal stress differences readily calls for
higher-order constitutive models even at the minimal level.

The present work is a direct descendant of our previous work (Saha & Alam 2014)
which dealt with a Grad-like (Grad 1949) extended hydrodynamic theory for the
shear flow of inelastic disks in two dimensions. It must be noted that the seminal
contributions in this direction have been made by Goldreich & Tremaine (1978),
Araki & Tremaine (1986), Jenkins & Richman (1988), Richman (1989), Chou &
Richman (1998) and Lutsko (2004): all these authors solved the inelastic Boltzmann or
Boltzmann–Enskog equation either numerically at finite densities, or semianalytically
in the limiting case of dilute flows. Our focus is however a little different: we
would like to derive analytical expressions for normal stress differences and other
transport coefficients that are valid for (i) a large range of density (encompassing
both the dilute and dense limits) and (ii) a small restitution coefficient (far away
from the limit of elastic collisions). Towards this goal and considering the canonical
set-up of homogeneous shear flow, we follow an analytical route to derive (i) an
exact Burnett-order solution for all transport coefficients and (ii) the corresponding
perturbation solutions at super-Burnett orders; (iii) this in turn helps to tie the origin
of normal stress differences with the anisotropy of the second-moment tensor of
velocity fluctuations.

This paper is organized as follows. The extended hydrodynamic theory is briefly
outlined in § 2. The second-moment tensor of velocity fluctuations is constructed via
a geometric analysis in terms of its eigenvalues and eigenvectors for the uniform
shear flow in § 3.1; its balance equation is analysed in §§ 3.2 and 3.3. Working in
a rotated coordinate frame and using a series expansion for certain integrals, the
balance equation for the second moment is reduced to a set of algebraic equations
as described in § 4. Two sets of analytical solutions of these algebraic equations
at different orders in the perturbation parameter are derived in §§ 4.1 and 4.2. The
closed-form expressions for (i) all components of the stress tensor, (ii) the shear
viscosity, (iii) the pressure, (iv) two normal stress differences and (v) the source of
the second-moment tensor (and the rate of collisional dissipation) are derived and
validated in § 5. The origin of stress anisotropy is discussed in § 6. The conclusions
and future work are given in § 7.

2. Extended hydrodynamic equations for a dense granular fluid
We consider a dense granular gas consisting of N randomly moving smooth inelastic

hard spheres of diameter σ and mass m. The particles loose energy upon collisions
which is characterized by a single parameter e, called the coefficient of normal
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restitution, with e = 1 and 0 referring to perfectly elastic and sticking collisions,
respectively. For a pair of colliding smooth spheres, the tangential component of their
relative velocity remains invariant but the normal component changes according to the
collision rule: (g′ · k)=−e(g · k), where g≡ g12= c1− c2 and g′= c′1− c′2 are the pre-
and post-collisional relative velocities, respectively, k≡ k12= (x2− x1)/|x2− x1| is the
unit contact vector joining the centre of sphere-1 to that of sphere-2 at collision. At
the mesoscopic level, the collective behaviour of such an N-particle system is well
described by the evolution of the single-particle distribution function f (c, x, t) which,
for a granular dense gas, reads as (Chapman & Cowling 1970; Jenkins & Richman
1985)(

∂

∂t
+ c · ∇

)
f = σ 2

∫
dc2

∫
g·k>0

dk(g · k)

×[e−2f (2)(c1, x, c2, x− σk; t)− f (2)(c′1, x, c′2, x+ σk; t)], (2.1)

where f (2) is the two-body distribution function and g ·k>0 accounts for the constraint
of impending collisions.

2.1. The 10-moment system
Going beyond the Navier–Stokes (NS)-order hydrodynamics of five field variables,
here we will work with an ‘extended’ set of 10 hydrodynamic fields: (i) the mass
density

ρ(x, t)≡mn(x, t)=m
∫

f (c, x, t) dc, (2.2)

(ii) the coarse-grained velocity

u(x, t)≡ 〈c〉 = 1
n(x, t)

∫
cf (c, x, t) dc, (2.3)

and (iii) the second-moment tensor

M(x, t)≡ 〈CC〉 = 1
n(x, t)

∫
CCf (c, x, t) dc, (2.4)

where n(x, t) is the number density and C≡ c− u is the peculiar/fluctuation velocity
of particles. The last hydrodynamic field (2.4) is required to account for normal
stress differences (Jenkins & Richman 1988; Chou & Richman 1998; Saha & Alam
2014) which are the primary focus of the present work. The balance equations for
the mass, momentum and second moment, respectively, can be obtained by taking
the appropriate moment of (2.1):(

∂

∂t
+ u · ∇

)
ρ =−ρ∇ · u, (2.5)

ρ

(
∂

∂t
+ u · ∇

)
u=−∇ · P, (2.6)

ρ

(
∂

∂t
+ u · ∇

)
M =−∇ ·Q− P · ∇u− (P · ∇u)T +ℵ, (2.7)
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where P is the total stress, a second-rank tensor, given by

P ≡ ρM +Θ(mC), (2.8)

Q is the flux of the second moment, a third-rank tensor, given by

Q≡ ρ〈CCC〉 +Θ(mCC), (2.9)

and ℵ is the collisional source of the second moment, a second-rank tensor, given by

ℵ≡ℵ(mCC). (2.10)

In (2.8)–(2.9), the first and second terms refer to the corresponding kinetic and
collisional contributions, respectively. The integral expression for the collisional flux
term Θ(ψ) of any particle-level property ψ is given by

Θ(ψ) = −σ
3

2

∫∫∫
g·k>0

(ψ ′1 −ψ1)k
∫ 1

0
f (2)(c1, x−ωσk, c2, x+ σk−ωσk)

× (k · g) dω dk dc1 dc2, (2.11)

where ω is an integration variable (Jenkins & Richman 1985), and that for the
collisional source of ψ , ℵ(ψ), is

ℵ(ψ)= σ
2

2

∫∫∫
g·k>0

(ψ ′1+ψ ′2−ψ1−ψ2)f (2)(c1, x− σk, c2, x)(k · g) dk dc1 dc2. (2.12)

Note that the origin of the collisional flux term (2.11) is tied to the ‘macroscopic’
nature of particles (and hence to the ‘denseness’ of the matter) and this term is zero
in a dilute gas of point particles.

Defining the granular temperature as T ≡ Mαα/3 and taking the trace of (2.7), we
obtain the balance equation for the granular energy

3
2
ρ

(
∂

∂t
+ u · ∇

)
T =−∂qα

∂xα
− Pαβ

∂uβ
∂xα
−D, (2.13)

and that of the deviator of the second moment

1
2
ρ

(
∂

∂t
+ u · ∇

)
M̂αβ =− ∂

∂xγ

(
Qγαβ − 2

3
qγ δαβ

)
−
{

1
2

(
Pγα

∂uβ
∂xγ
+ Pγβ

∂uα
∂xγ

)
− 1

3
Pγ ξ

∂uξ
∂xγ

δαβ

}
+ 1

2
ℵ̂αβ . (2.14)

In the above equations,

qα ≡ 1
2 Qαββ = 1

2ρMαββ + 1
2Θαββ (2.15)

is the heat flux vector, and

D ≡− 1
2ℵββ =− 1

2ℵ(mC2) (2.16)

is the rate of dissipation of kinetic energy per unit volume. The balance equations
(2.5)–(2.6) and (2.13), along with constitutive relations for (2.8), (2.15) and (2.16),
constitute the NS-order hydrodynamics for which the equation for the deviatoric part
of the second-moment tensor (2.14) is satisfied identically.
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For an extended hydrodynamic description of granular fluids, incorporating normal
stress differences, the balance equation (2.7) for the full second-moment tensor along
with the mass and momentum balances (2.5)–(2.6) are needed. For a closure of (2.7),
the deviatoric part of the third order Qγαβ ,

Q̂γαβ =Qγαβ − 1
5(Qγ ξξδαβ +Qαξξδγβ +Qβξξδαγ ), (2.17)

is assumed to be zero, leaving only its isotropic part, the heat flux vector (2.15),
to be evaluated as a constitutive relation. In this paper, we specifically focus on
the uniform shear flow (see § 3) for which (2.15) is zero; therefore we are left to
determine constitutive relations for the stress tensor (2.8) and the source of the second
moment (2.10) as discussed in §§ 3–5.

2.2. Anisotropic Gaussian distribution function and the maximum entropy principle
To evaluate (2.11) and (2.12), we adopt the molecular chaos ansatz (Chapman &
Cowling 1970)

f (2)(c1, x− σk, c2, x)= g0(ν)f (c1, x− σk)f (c2, x), (2.18)

that relates the two-particle distribution function as a product of two single-particle
velocity distribution functions. The positional correlation is taken care of via the well-
known contact radial distribution function of Carnahan & Starling (1969),

g0(ν)= (2− ν)
2(1− ν)3 , (2.19)

with
ν = nπσ 3/6 (2.20)

being the local volume fraction of particles. Finally we assume that the single-particle
velocity distribution is an anisotropic Maxwellian/Gaussian

f (c, x, t)= n
(8π3|M|)1/2 exp

(
−1

2
C ·M−1

·C
)
, (2.21)

with |M| = det(M), which contains complete information about the second-moment
tensor M . This form was originally used by Holway (1966) to improve certain
problems in the BGK (Bhatnagar–Gross–Krook) model of gas dynamics, resulting in
what is popularly known as the ‘Ellipsoidal’ BGK model. In fact it is straightforward
to show that (2.21) follows from the maximum entropy principle (Jaynes 1957;
Holway 1966) when an extended set of hydrodynamic fields (ρ, u and M) is assumed
to hold.

While (2.21) is an appropriate leading-order distribution function for a non-
equilibrium steady state, such as steady uniform shear flow (Goldreich & Tremaine
1978; Araki & Tremaine 1986; Araki 1988; Jenkins & Richman 1988; Richman
1989; Chou & Richman 1998; Lutsko 2004; Saha & Alam 2014), the isotropic
Maxwellian/Gaussian

f (c, x, t)= n
(2πT)3/2

exp
(
−C2

2T

)
, (2.22)

(i.e. (2.21) with Mαβ = Tδαβ) holds for the rest state of a gas at equilibrium.
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3. Steady uniform shear flow and the second-moment tensor

We consider a collection of smooth inelastic spheres of mass m and diameter σ ,
subjected to uniform shear flow in the (x, y)-plane:

u= 2γ̇ y, v = 0 and w= 0, (3.1a−c)

where 2γ̇ is the uniform/constant shear rate. Note that x and y denote flow and
gradient directions, respectively, and the z direction is perpendicular to the x–y plane,
see figure 2; in the following, the (x, y)-plane is referred to as the shear plane, with
the z-direction being the vorticity direction. The velocity gradient tensor completely
characterizes the uniform shear flow (USF):

∇u=
0 2γ̇ 0

0 0 0
0 0 0

≡ D +W , (3.2)

with the shear (D) and spin (W ) tensors, respectively, given by

D =
0 γ̇ 0
γ̇ 0 0
0 0 0

 and W =
 0 γ̇ 0
−γ̇ 0 0
0 0 0

 . (3.3a,b)

It is straightforward to verify that γ̇ , −γ̇ and 0 are the eigenvalues of D and the
corresponding orthonormal eigenvectors are, respectively,

|D1〉=


cos

π

4

sin
π

4
0

 , |D2〉=


−sin

π

4

cos
π

4
0

 and |D3〉=
0

0
1

 , (3.4a−c)

that are sketched in figure 2. While |D3〉 is directed along the z-axis, the shear-plane
eigenvectors |D1〉 and |D2〉 are rotated by 45◦ anticlockwise from the xy-axes.

3.1. Construction of the second-moment tensor from its eigenvectors
Recalling that the granular temperature T = Mαα/3 is the isotropic measure of the
second-moment tensor M , we can decompose M into an isotropic tensor and a
traceless deviatoric tensor:

M

T
= I + M̂

T
, (3.5)

where M̂/T is the dimensionless counterpart of its deviatoric/traceless tensor whose
eigenvalues ξ , ς and ζ satisfy ξ +ς + ζ =0. From (3.5) it follows that the eigenvalues
of M are T(1+ ξ), T(1+ ς) and T(1+ ζ ), and let us assume that the corresponding
orthonormal set of eigendirections are |M1〉, |M2〉 and |M3〉 (see figure 2), respectively.
Therefore, we can express the second-moment tensor M as

M = T(1+ ξ)|M1〉〈M1| + T(1+ ς)|M2〉〈M2| + T(1+ ζ )|M3〉〈M3|. (3.6)
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y

x

k

FIGURE 2. (Colour online) Sketch of the spherical coordinate system showing the
eigendirections of the shear tensor D and the second-moment tensor M . The uniform shear
flow, u= (2γ̇ y, 0, 0), is directed along the x-direction, with the velocity gradient along the
y-direction and the mean vorticity along the z-direction.

Referring to figure 2, we assume that the shear-plane eigenvectors |M1〉 and |M2〉 can
be obtained by rotating the system of axes at an angle (π/4 + φ), with φ being
unknown, in the anticlockwise sense about the z-axis which coincides with |M3〉:

|M1〉=


cos
(
φ + π

4

)
sin
(
φ + π

4

)
0

 , |M2〉=


−sin

(
φ + π

4

)
cos
(
φ + π

4

)
0

 and |M3〉=
0

0
1

 . (3.7a−c)

We further assume that the contact vector k makes an angle ϕ with |M3〉 , and θ is
the angle between |M1〉 and k − (k · z)z, the projection of k on the shear plane, as
shown in figure 2. Inserting (3.7) into (3.6), we obtain the following expression for
the second-moment tensor

M = T[δαβ] + M̂, (3.8)

and its deviatoric part is

M̂ = T

λ2 + η sin 2φ −η cos 2φ 0
−η cos 2φ λ2 − η sin 2φ 0

0 0 −2λ2

 , (3.9)

where we have introduced the following notation

η≡ 1
2
(ς − ξ)> 0 and λ2 ≡ 1

2
(ς + ξ)=−ζ

2
> 0. (3.10a,b)
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Note that while η ∼ (Tx − Ty) is a measure of the anisotropy of the second-moment
tensor in the shear plane, λ2 is a measure of the excess temperature (∼(T − Tz),
where Ti is the temperature along the ith direction, see § 6.1) along the mean vorticity
direction. It is straightforward to verify that the eigenvalues in the shear plane can be
expressed in terms of η and λ via

ξ = λ2 − η and ς = λ2 + η > ξ, (3.11a,b)

with the eigenvalue, ζ , along the vorticity direction (z), being given by (3.10).
Let us define the dimensionless shear rate (Savage & Jeffrey 1981)

R≡ γ̇

4
√

T/σ 2
=
( √

T
σ γ̇ /4

)−1

≡ vsh

vth
, (3.12)

which can be interpreted as the inverse of the square root of dimensionless
temperature. Equation (3.12) is called the Savage–Jeffrey parameter (Savage & Jeffrey
1981) which is a measure of the mean shear velocity (vsh = σ γ̇ /2 over a particle
diameter) relative to the thermal velocity (vth ∝

√
T) associated with the random

motion of particles. The second-moment tensor (3.8) in USF, constructed from its
eigenbasis, is therefore completely determined when R, η, φ and λ2 are specified.

3.2. The balance of second moment in USF
In steady uniform shear flow, the number density n, the velocity gradient ∇u and
the components of the second-moment tensor M are constants and the contracted
third moment vanishes. Therefore, the mass and momentum balance equations,
(2.5) and (2.6), are identically satisfied. The remaining balance equation (2.7),
Pδβuα,δ + Pδαuβ,δ =ℵαβ , for the second-moment tensor simplifies to

ρMδβ(Dαδ +W αδ)+ ρMδα(Dβδ +W βδ)+ΘδβDαδ +ΘδαDβδ = Aαβ + Êαβ + Ĝαβ, (3.13)

where we made use of uα,δ = (Dαδ + W αδ), Pαβ = ρMαβ + Θαβ and the following
decomposition for the collisional source of second moment (Jenkins & Richman 1988;
Chou & Richman 1998; Saha & Alam 2014):

ℵαβ = Aαβ + Êαβ + Ĝαβ +ΘαδW βδ +ΘβδW αδ. (3.14)

The integral expression for the collisional stress tensor is

Θαβ = 3(1+ e)ρνg0(ν)

π3/2

∫
kαkβ(k ·M · k)G(χ) dk, (3.15)

the tensor Aαβ is

Aαβ =−6(1− e2)ρνg0(ν)

σπ3/2

∫
kαkβ(k ·M · k)3/2F(χ) dk, (3.16)

and the traceless tensors (denoted by a hat), Êαβ and Ĝαβ , are

Êαβ =−12(1+ e)ρνg0

σπ3/2

∫
(kαjβ + jαkβ)(k ·M · j)(k ·M · k)1/2F(χ) dk, (3.17)
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Ĝαβ = 6(1+ e)ρνg0

π3/2

∫
(kαjβ + jαkβ)[(k ·M · k)(k · D · j)− (k · M̂ · j)(k · D · k)]G(χ) dk.

(3.18)

The integrals (3.15)–(3.18) are to be evaluated over dk such that dk= sinϕ dϕ dθ , with
the limits of the integrations being θ ∈ (0, 2π) and ϕ ∈ (0,π).

In (3.17)–(3.18), j represents an unit vector perpendicular to the contact vector k
that lies in the plane formed by g and k such that

k=


cos
(
θ + φ + π

4

)
sin ϕ

sin
(
θ + φ + π

4

)
sin ϕ

cos ϕ

 (3.19a)

and

j= 1√
2


cos ϕ cos

(
θ + φ + π

4

)
− sin

(
θ + φ + π

4

)
cos ϕ sin

(
θ + φ + π

4

)
+ cos

(
θ + φ + π

4

)
−sinϕ

 . (3.19b)

The following two analytic functions (Araki & Tremaine 1986) appear in the
integrand of (3.15)–(3.18):

F(χ)≡−√π( 3
2χ + χ 3)erfc(χ)+ (1+ χ 2) exp(−χ 2), (3.20)

G(χ)≡√π( 1
2 + χ 2)erfc(χ)− χ exp(−χ 2), (3.21)

where

χ(R, η, φ, λ; θ, ϕ)≡ σ(k · ∇u · k)
2
√
(k ·M · k)

= 2R sin2 ϕ cos(2φ + 2θ)√
(1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2))

.

(3.22)
The origin of χ can be traced to the excluded volume effects of macroscopic particles
(Jenkins & Richman 1988; Saha & Alam 2014), and hence χ = 0 in the dilute limit
and, consequently,

F(χ)= 1 and G(χ)=
√

π

2
, as ν→ 0. (3.23a,b)

3.3. Second-moment balance in rotated coordinate frame
Let us now rewrite (3.13) in a new coordinate system x′y′z′, formed by the
orthonormal triad of eigenvectors of M , i.e., with respect to the coordinate system
whose axes coincide with |M1〉 , |M2〉 and |M3〉 , respectively. This amounts to a
transformation, see figure 2, via the following rotation matrix,

R =


cos
(
φ + π

4

)
−sin

(
φ + π

4

)
0

sin
(
φ + π

4

)
cos
(
φ + π

4

)
0

0 0 1

 , (3.24)
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that transforms the second-moment tensor,

M ′ = T

1+ λ2 − η 0 0
0 1+ λ2 + η 0
0 0 1− 2λ2

 , (3.25)

into a diagonal matrix. With a prime over a quantity denoting its value in the new
coordinate frame, the following relations hold:

k′ = cos θ sin ϕ|M1〉 + sin θ sin ϕ|M2〉 + cos ϕ|M3〉, (3.26)

j′ = 1√
2
[(cos ϕ cos θ − sin θ)|M1〉 + (cos ϕ sin θ + cos θ)|M2〉 − sin ϕ|M3〉], (3.27)

u′ = 2γ̇
[
x′ sin

(
φ + π

4

)
+ y′ cos

(
φ + π

4

)][
cos
(
φ + π

4

)
|M1〉 − sin

(
φ + π

4

)
|M2〉

]
,

(3.28)

D′ = γ̇
 cos 2φ −sin 2φ 0
−sin 2φ −cos 2φ 0

0 0 0

 and W ′ =W . (3.29a,b)

The last equation confirms that the spin tensor W is invariant under the planar
rotation (3.24).

With the aid of (3.25)–(3.29), the second-moment balance equation (3.13)
transforms into four independent equations in the rotated coordinate frame: (i) the
trace of (3.13),

−4ηρT γ̇ cos 2φ + 2γ̇ [(Θx′x′ −Θy′y′) cos 2φ − 2Θx′y′ sin 2φ] = Ax′x′ + Ay′y′ + Az′z′, (3.30)

(ii) the z′–z′ component of its deviatoric part

−4ηρT γ̇ cos 2φ + 2γ̇ [(Θx′x′ −Θy′y′) cos 2φ − 2Θx′y′ sin 2φ] =−3Γ̂z′z′, (3.31)

(iii) the difference between the x′–x′ and y′–y′ components

4(1+ λ2)ρT γ̇ cos 2φ + 2γ̇ (Θx′x′ +Θy′y′) cos 2φ = Γx′x′ − Γy′y′, (3.32)

and, finally, (iv) the off-diagonal x′–y′ component

2ρT γ̇ [η− (1+ λ2) sin 2φ] − (Θx′x′ +Θy′y′)γ̇ sin 2φ = Γx′y′, (3.33)

where
Γαβ = Aαβ + Êαβ + Ĝαβ, (3.34)

see (3.14)–(3.18). Various collision integrals (Θα′β ′ , Aα′β ′ and Γα′β ′) appearing in (3.30)
–(3.33) can be expressed in terms of the following three integrals (see appendix A in
supplementary materials available at http://dx.doi.org/10.1017/jfm.2016.237):

H δp
αβγ (η, R, φ, λ) ≡

∫ 2π

θ=0

∫ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

× (1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2))γ /2

×F(χ [η, R, φ, λ; θ, ϕ]) dϕ dθ, (3.35)
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J δp
αβγ (η, R, φ, λ) ≡

∫ 2π

θ=0

∫ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ

× (1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2))γ /2

×G(χ [η, R, φ, λ; θ, ϕ]) dϕ dθ, (3.36)

K δp
αβ (η, R, φ, λ) ≡

∫ 2π

θ=0

∫ π

ϕ=0
sinα 2θ cosβ 2θ sinδ ϕ cosp ϕ[(1− 2λ2)(sin(2φ + 2θ)

− cos ϕ × cos(2φ + 2θ))+ sin2 ϕ(3λ2 sin(2φ + 2θ)− η sin 2φ)]
×G(χ [η, R, φ, λ; θ, ϕ]) dϕ dθ, (3.37)

with F(χ) and G(χ) being given by (3.20) and (3.21) respectively. Of course, the
integrals (3.35)–(3.37) can be evaluated numerically via any quadrature method.

In § 4, we outline an approximate method to evaluate the integrals (3.35)–(3.37)
analytically via a power series expansion which helps to reduce the integro-algebraic
equations (3.30)–(3.33) into a set of algebraic equations for four unknowns η, R, φ
and λ. More importantly, we derive ‘closed-form’ analytical solutions of the second-
moment balance at the Burnett order (see § 4.1) and beyond (§ 4.2).

4. Closed-form solutions of ‘truncated’ second-moment equations

We substitute the power series representations for the complementary error function
and the exponential into (3.20) and (3.21). After some straightforward algebra, the
expressions for F(χ) and G(χ) can be written as (Saha & Alam 2014)

F(η, R, φ, λ; θ, ϕ) = −√π

[
3R sin2 ϕ cos(2φ + 2θ)

{1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2)}1/2

+
{

2R sin2 ϕ cos(2φ + 2θ)
{1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2)}1/2

}3
]

+
∞∑

n=0

(−1)n

n!
3

(2n− 1)(2n− 3)

×
[

2R sin2 ϕ cos(2φ + 2θ)
{1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2)}1/2

]2n

, (4.1)

G(η, R, φ, λ; θ, ϕ) = √π

[
1
2
+ 4R2 sin4 ϕ cos2(2φ + 2θ)

1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2)

]
+

∞∑
n=0

(−1)n

n!
2

(2n− 1)(2n+ 1)

×
[

2R sin2 ϕ cos(2φ + 2θ)
{1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2)}1/2

]2n+1

. (4.2)

Substituting (4.1)–(4.2) into (3.35)–(3.37) and carrying out term-by-term integrations
over θ ∈ (0, 2π) and ϕ ∈ (0, π) results in an infinite series in η, R and λ for each
integral in (3.35)–(3.37), see (A 3)–(A 17) in appendix A (supplementary materials).
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4.1. Exact solution at Burnett order
Retaining terms up to second order O(ηmλnRp sinq(2φ), m + n + p + q 6 2) in the
resulting infinite series for each integral (3.35)–(3.37) and substituting them into
(3.30)–(3.33), we obtain the following set of coupled nonlinear algebraic equations

20
√

π{1+ 4
5(1+ e)νg0}ηR cos 2φ + 128(1+ e)νg0R2

− 3(1− e2)νg0(10+ η2 + 32R2 + 8
√

πηR cos 2φ)= 0

35
√

πηR cos 2φ + (1+ e)νg0{32(1+ 3e)R2 − 3(3− e)(η2 + 21λ2)

− 8
√

π(4− 3e)ηR cos 2φ} = 0

5
√

πR cos 2φ − (1+ e)νg0{3(3− e)η+ 2(1− 3e)
√

πR cos 2φ} = 0

5(η− sin 2φ)+ 2(1+ e)(1− 3e)νg0 sin(2φ)= 0.


(4.3)

These equations represent the second-moment balance equations at ‘Burnett order’
(Burnett 1935) since all terms up to the second order in the shear rate have been
retained.

Equations (4.3) admit an exact solution

η= {5− 2(1+ e)(1− 3e)νg0}
5

sin 2φ

λ2= 10(1− e)
21(3− e)

+ [(7− 3e){5− 2(1+ e)(1− 3e)νg0} − 18(1+ e)2(3− e)νg0]
525(3− e)

×{5− 2(1+ e)(1− 3e)νg0} sin2 2φ

R= 3(1+ e)(3− e)
5
√

π
νg0 tan 2φ

η

R
cos(2φ)=

√
π

3(1+ e)(3− e)
cos2(2φ)

(
5
νg0
+ 2(1+ e)(3e− 1)

)
,


(4.4)

where sin2(2φ)=Y is the real positive root of the quadratic equation

(11− 3e){5− 2(1+ e)(1− 3e)νg0}2πY 2 −Y [(11− 3e){5− 2(1+ e)(1− 3e)νg0}2π
+ 96(1+ 3e)(1+ e)2(3− e)2ν2g2

0 + 250π(1− e)] + 250π(1− e)= 0. (4.5)

For specified values of ν and e, the non-coaxiality angle φ is determined from (4.5)
and the remaining quantities are from (4.4): this is dubbed the ‘Burnett-order’ solution
for φ, η, λ2 and R as functions of ν and e.

4.2. Beyond Burnett order: perturbation solution
To obtain solutions beyond the Burnett order, i.e. at O(ηmλnRp sinq(2φ), m + n +
p+ q> 2), we must solve related nonlinear algebraic equations as given by (B 1) in
appendix B. We could not find an ‘exact’ solution of (B 1) either at super-Burnett or
super–super Burnett order (except in the dilute limit, see appendix B.2). Therefore we
look for perturbation solution of (B 1) by taking our Burnett-order solution (4.4)–(4.5)
as the leading solution:

η= η(2) + εη(3) + ε2η(4) + · · ·
λ= λ(2) + ελ(3) + ε2λ(4) + · · ·
R= R(2) + εR(3) + ε2R(4) + · · ·

sin 2φ = sin 2φ(2) + ε sin 2φ(3) + ε2 sin 2φ(4) + · · · .

 (4.6)
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FIGURE 3. (Colour online) Variations of (a) η, (b) λ2, (c) R and (d) φ (degrees) with
density (ν). While the solid black lines denote the exact numerical solution of second-
moment equations, the blue dashed and the red dot-dashed lines denote the exact Burnett-
order solution and the perturbation solution at fourth order, respectively.

In the above expressions ε ∼ γ̇ and the superscript ‘2’ corresponds to the ‘Burnett-
order’ solution and the superscripts ‘3’ and ‘4’ correspond to the corrections at
the third and fourth order, respectively, in the shear rate. Plugging (4.6) into
the corresponding third- and fourth-order equations and after performing some
cumbersome algebra, we obtain the following solution for the correction terms at
third order:

η(3) = 0= λ(3) = R(3) = sin 2φ(3). (4.7)

The fourth-order correction terms are found to be non-zero and are given in
appendix B.1 (supplementary materials).

4.3. Comparison between analytical and numerical solutions for η, φ, λ and R
Figure 3(a–d) shows a comparison of the ‘exact’ numerical solution of second-moment
equations with its (i) exact Burnett-order solution and (ii) perturbation solution at the
fourth order for the variations of the shear-plane anisotropy η, the excess temperature
λ2, the dimensionless shear rate R and the non-coaxiality angle φ (degrees) with
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density (ν) for three values of the restitution coefficient e= 0.9, 0.7 and 0.5. In each
panel, while the solid black lines denote the exact numerical solution, the blue dashed
lines and red dot-dashed lines denote the analytical solutions at the second and fourth
order, respectively. It is seen that while the Burnett-order solution provides a good
agreement for η, λ2, φ and R up to a restitution coefficient of e> 0.9, the fourth-order
solution is required for more dissipative particles (e= 0.5) for a reasonable agreement
over the whole range of density (for λ2, R and φ, see panels b, c and d respectively).
On the other hand, panel a indicates that even the fourth-order perturbation solution
is not enough to quantitatively predict the shear-plane anisotropy η at e= 0.5 in the
dense limit (for ν > 0.3).

All transport coefficients in USF can be expressed as functions of η, λ2, φ and R as
discussed in §§ 5.1–5.4. We will further check the ability of the Burnett- and fourth-
order solutions of the second-moment equation to predict p, µ, N1 and N2 in § 5.5 as
functions of ν and e.

5. Constitutive relations for non-Newtonian stress and collisional dissipation

The dimensionless stress tensor in USF can be written as

P∗ = P

ρpU2
R
=

P∗xx P∗xy 0
P∗yx P∗yy 0
0 0 P∗zz


≡
p∗ 0 0

0 p∗ 0
0 0 p∗

+


2
3 N∗1 + 1

3 N∗2 −µ∗ 0

−µ∗ − 1
3 N∗1 + 1

3 N∗2 0

0 0 − 1
3 N∗1 − 2

3 N∗2

 , (5.1)

where
p∗ = 1

3(P
∗
xx + P∗yy + P∗zz)

µ∗ =−P∗xy,

N∗1 = (P∗xx − P∗yy),

N∗2 = (P∗yy − P∗zz)

 (5.2)

is the pressure, the shear viscosity and the first and second normal stress differences,
respectively; here ρp is the material/intrinsic density of particles and UR= 2γ̇ σ is the
reference velocity scale.

The power series (4.2) for G(η, R, φ, λ) is inserted into (3.15) to evaluate the
collisional stress, and the total stress tensor is subsequently obtained from (2.8) by
summing the kinetic stress and the collisional stress. We will express constitutive
relations in terms of the dimensionless temperature, which is defined as

T∗ = T
U2

R
≡ 1

64R2
. (5.3)

The final analytical expressions for the components of the stress tensor are provided
in the following subsections, and the related algebraic details can be found in
appendix C.
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5.1. Shear stress and viscosity
Retaining all terms up to the fourth order O(ηmλnRp sinq(2φ),m+ n+ p+ q 6 4), the
dimensionless shear stress can be written as (see appendix C)

P∗xy

νT∗
= −η cos 2φ − 4(1+ e)νg0

105
√

π

[
21R

{
8+√π

η cos 2φ
R

}
+ 48λ2R

+ 4R3

{
32− η

2

R2
(2+ (1+ 2 cos2 2φ))

}]
, (5.4)

with the dimensionless temperature T∗ being given by (5.3). The expression for the
dimensionless shear viscosity, µ∗ =−Pxy/ρpU2

R =−P∗xy, follows from (5.4):

µ∗ = ν
√

T∗

8

[
η cos 2φ

R
+ 4(1+ e)νg0

105
√

π

(
21
{

8+√π
η cos 2φ

R

}
+ 48λ2 + 128R2 − 4η2{2+ (1+ 2 cos2 2φ)}︸ ︷︷ ︸

)]
, (5.5)

where the under-braced terms represent nonlinear contributions beyond the NS
order.

Neglecting quadratic- and higher-order terms in (5.5), we obtain the NS-order
expression for the shear viscosity:

µ∗NS =
ν
√

T∗

8

[
η cos 2φ

R
+ 4(1+ e)νg0

5

(
8√
π
+ η cos 2φ

R

)]
+O(R2). (5.6)

The elastic limit of the Burnett-order solution (4.4) for η cos 2φ/R, with φ→ 0 (which
holds at NS order),

η cos 2φ
R

e=1
φ=0−→ 5

√
π

12

(
1
νg0
+ 8

5

)
, (5.7)

can be substituted into (5.6) to arrive at

µelastic
NS =√T∗

[
5
√

π

96g0

(
1+ 8

5
νg0

)2

+ 8
5
√

π
ν2g0

]
. (5.8)

This expression (5.8) matches exactly with the shear viscosity for an elastic hard-
sphere system (Chapman & Cowling 1970).

5.2. Normal stress components and the pressure
The diagonal components of the stress tensor, correct up to O(ηmλnRp sinq(2φ),
m+ n+ p+ q 6 4), have the following expressions:

P∗xx

νT∗
= (1+ λ2 + η sin 2φ)+ 2(1+ e)νg0

1155

[
33(35+ 96R2 + 14η sin 2φ + 14λ2)

+ 8√
π
ηR cos 2φ{3(66+ 5η2 − 22λ2)− 160R2 − 22η sin 2φ}

]
, (5.9)
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P∗yy

νT∗
= (1+ λ2 − η sin 2φ)+ 2(1+ e)νg0

1155

[
33(35+ 96R2 − 14η sin 2φ + 14λ2)

+ 8√
π
ηR cos 2φ{3(66+ 5η2 − 22λ2)− 160R2 + 22η sin 2φ}

]
, (5.10)

P∗zz

νT∗
= (1− 2λ2)+ 2(1+ e)νg0

1155

×
[

33(35+ 32R2 − 28λ2)+ 8√
π
ηR cos 2φ{(66+ 3η2 − 32R2)}

]
. (5.11)

The dimensionless mean pressure, correct up to O(ηmλnRp sinq(2φ),m+ n+ p+ q6 4),
is given by

p∗ = νT∗

1+ 2(1+ e)νg0

315

315+ 672R2 + 8√
π
ηR cos 2φ(42+ 3η2 − 32R2 − 12λ2)︸ ︷︷ ︸


.

(5.12)
Neglecting the ‘under-braced’ nonlinear terms in (5.12), we obtain the well-known
expression for pressure,

p∗NS = νT∗(1+ 2(1+ e)νg0), (5.13)

at the NS order.

5.3. First and second normal stress differences
Subtracting (5.10) from (5.9) the expression for the first normal stress difference (third
equation in (5.2)) is found to be

N∗1 = 2η sin(2φ)
(

1+ 4(1+ e)νg0

105

[
21− 8√

π
ηR cos(2φ)

])
νT∗. (5.14)

Similarly, the expression for the second normal stress difference (last equation in (5.2))
is

N∗2 = [3λ2 − η sin(2φ)]νT∗ + 32(1+ e)ν2T∗g0

1155

[
264

(
1
2
+ 7
ν

Nk∗
2

)
R2

+ 1√
π
ηR cos 2φ{66+ 6η2 − 64R2 − 33λ2 + 11η sin 2φ}

]
, (5.15)

where T∗ is the dimensionless temperature (5.3). Both (5.14) and (5.15) are correct at
fourth order O(ηmλnRp sinq(2φ),m+ n+ p+ q 6 4).

5.4. Source of the second moment and the collisional dissipation
In USF the collisional source of the second moment (3.14) takes the following form:

ℵ=
ℵxx ℵxy 0
ℵyx ℵyy 0
0 0 ℵzz

 , (5.16)
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with its non-zero components being given by

ℵxx = Axx + Êxx + Ĝxx + 2γ̇ Θxy

ℵyy = Ayy + Êyy + Ĝyy − 2γ̇ Θxy

ℵzz = Azz + Ê zz + Ĝzz

ℵxy = Axy + Êxy + Ĝxy + γ̇ (Θyy −Θxx).

 (5.17)

The integral expressions for Θαβ (3.15), Aαβ (3.16), Eαβ (3.17) and Gαβ (3.18) have
been evaluated (appendix A) in terms of η, λ and R, correct up to O(ηmλnRp sinq(2φ),
m+ n+ p+ q6 4), and the resulting truncated series for each term in (5.17) is written
down in appendix D (supplementary materials).

5.4.1. Collisional dissipation
The constitutive expression for the collisional dissipation rate (2.16) follows directly

from the trace of (5.16):

D =−1
2
ℵββ =−1

2
(Axx + Ayy + Azz)= 3(1− e2)ρνg0T3/2

σπ3/2
H 10

003(η, λ
2, R, φ)

= ρνg0(1− e2)T3/2

70σ
√

π

[
840+ 32

{(
84+ 21

√
π
η

R
cos 2φ

)
+ 32R2 − 2η2(2+ cos 4φ)+ 24λ2

}
R2 + 3(28η2 + η4 − 8η2λ2 + 84λ4)

]
, (5.18)

where we have retained terms up to O(ηmλnRp sinq(2φ), m + n + p + q 6 4). In the
isotropic limit (η→ 0 and λ2→ 0), we obtain

D =D0(1+ 16
5 R2 + 128

105 R4), (5.19)

where

D0 = 12ρpν
2g0(1− e2)T3/2

σ
√

π
(5.20)

is the corresponding bare part valid at NS order (Jenkins & Richman 1985).
The quadratic-order shear-rate dependence in (5.18) agrees qualitatively with that
calculated by Sela & Goldhirsch (1998) via a Burnett-order Chapman–Enskog
expansion of the inelastic Boltzmann equation. The dependence of (5.18) on η

and λ indicates that the Grad-level collisional dissipation depends on both normal
stress differences,

D ≡D(· · · ; N1, N2), (5.21)

since (η, λ)∼ (N1, N2) as we demonstrate below.

5.4.2. Dilute limit: dependence on NSDs
To clarify the functional dependence of (5.18) on normal stress differences, we

focus on the dilute limit. In appendix B.2 (supplementary materials) we showed that
the second-moment equations admit an exact solution in the dilute limit (ν→ 0):

η2 = 1
12(6+ Nk

1 + 2Nk
2)N

k
1

λ2 = 1
6(N

k
1 + 2Nk

2),

}
(5.22)
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where Nk
1 = (Pk

xx − Pk
yy)/p and Nk

2 = (Pk
yy − Pk

zz)/p are the kinetic parts of the ‘scaled’
first and second normal stress differences, respectively. Substituting (5.22) into (5.18)
and retaining terms up to quadratic order in Nk

1 and Nk
2, we obtain the following

expression for the collisional dissipation rate,

D = 3ρpν
2(1− e2)T3/2

70σ
√

π
[280+ η2(28+ η2 − 8λ2)+ 84λ4] + h.o.t.,

= 3ρpν
2(1− e2)T3/2

70σ
√

π

[
280+ Nk

1

2

(
28+ 1

2
Nk

1 +
10
3
(Nk

1 + 2Nk
2)

)
+ 7

3
(Nk

1 + 2Nk
2)

2

]
+O((Nk

i )
3), (5.23)

which holds in the dilute limit. That the Grad-level dissipation rate depends on the
normal stress difference was pointed out previously (Saha & Alam 2014) for the case
of granular shear flow in two dimensions.

5.5. Validation of non-Newtonian constitutive relations
For the ‘exact’ numerical solution of (3.30)–(3.33), first we evaluate the integrals
H δp

αβγ (3.35), J δp
αβγ (3.36), and K δp

αβ (3.37), that appear in (A 1)–(A 2), numerically
using the standard quadrature rule, for specified values of ν and e. Substituting the
numerically evaluated integrals into (3.30)–(3.33) results in a system of nonlinear
algebraic equations which again is solved by the same Newton’s method. The values
of η, R, φ and λ thus obtained are inserted into the expressions for pressure (p, (C 6)),
viscosity (µ, (C 8)) and the normal stress differences (N1 and N2, (C 9)) as given
in appendix C. Such numerically obtained transport coefficients are dubbed ‘exact’
numerical solutions since a very high accurate solution can be obtained, limited
only by the truncation error of the quadrature rule and the machine precision. In
the following, such exact numerical solutions for p, µ, T , N1 and N2 are compared
with those obtained from (i) the (exact) Burnett-order solution (§ 4.1) and (ii) the
perturbation solution at fourth order (§ 4.2) for η, R, φ and λ.

Figure 4(a–c) displays the density variations of (a) the pressure p, (b) the shear
viscosity µ and (c) granular temperature T for three values of the restitution
coefficient 0.9, 0.7 and 0.5. In each panel, the ‘exact’ numerical solution (denoted
by the black solid line) is compared with (i) Burnett order (blue dashed line) and
(ii) the perturbation solution at fourth order (red dot-dashed line). It is seen that
the Burnett-order solutions for p, µ and T are almost indistinguishable from their
exact numerical value at small dissipation (e= 0.9); moreover, this agreement seems
to hold uniformly for the whole range of density. On the other hand, retaining the
fourth-order terms yields a better agreement for p, µ and T at large dissipation
(e= 0.5).

The ability of the fourth-order series solution to quantitatively predict p and µ at
any density also holds for both the first and second normal stress differences, see
figure 5(a,b). Note that the plotted quantities in figure 5 are the ‘scaled’ first and
second normal stress differences defined via

N1 = Pxx − Pyy

p
(5.24)

N2 = Pyy − Pzz

p
(5.25)
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p

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5
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100
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100

10–1

10–2

100
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(a) (b)

(c)

FIGURE 4. (Colour online) Comparison between the ‘Burnett-order’ analytical solution
(blue dashed lines), fourth-order perturbation solution (red dot-dashed lines) and the ‘exact’
numerical solution (black solid lines) for the variations of the (a) pressure, (b) shear
viscosity and (c) granular temperature with volume fraction (ν). The filled circles denote
the simulation data of Alam & Luding (2005) for e= 0.9.

respectively, with the expressions for Pxx, Pyy, Pzz and p given in (5.9)–(5.12);
equations (5.24) and (5.25) are measures of two normal stress differences with
respect to the mean pressure. In figure 5(b) we find that N2 undergoes a sign reversal
at some finite density. The location (ν = νcr) of the sign reversal of N2 appears to be
independent of the restitution coefficient, see figure 5(b).

The event-driven simulation data for the uniform shear flow of inelastic hard
spheres, previously carried out by Alam & Luding (2005) for a restitution coefficient
of e = 0.9, are superimposed in figures 4 and 1. Note that Alam & Luding (2005)
used event-driven techniques to conduct these simulations of smooth inelastic hard
spheres in a cubic box by implementing the Lees–Edwards boundary condition (Lees
& Edwards 1972) along the gradient (y) direction with periodic boundary conditions
along the streamwise (x) and spanwise (z) directions: the other details of simulation

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 JN

CA
SR

, o
n 

23
 A

ug
 2

01
8 

at
 1

8:
02

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

6.
23

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.237


Normal stress differences and constitutive relations for a sheared granular fluid 569

0 0.1 0.2 0.3 0.4 0.5
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0.2

0.4
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0.4(a) (b)

FIGURE 5. (Colour online) Same as figure 4, but for the variations of (a) the scaled first
(N1) and (b) second (N2) normal stress differences with volume fraction (ν).

can be obtained from the original paper. Figure 4(a–c) indicates that our theoretical
predictions are in good agreement with the simulation data for p, µ and T as well as
for two normal stress differences N1 and N2 (figure 1) over a large range of density
up to the freezing density (ν ∼ 0.5).

We may conclude from the comparative study in figures 3–5 that the terms retained
up to the fourth order (super2-Burnett solutions) in the series expansion (4.1)–(4.2)
(that appear in various collision integrals (3.35)–(3.37) in the second-moment balance
equations (3.30)–(3.33)) provide an adequate accuracy to predict all transport
coefficients (p, µ, N1 and N2) in a sheared granular fluid over a large range of
ν and e.

6. Origin of normal stress differences

It is clear from (3.9) that the second-moment tensor M is anisotropic, and the
measure of its anisotropy is given by η, φ and λ2. Note that η [(3.10)] is the
difference between the two shear-plane eigenvalues of M which, in physical terms, is
a measure of the anisotropy of the second-moment tensor M on the shear plane. On
the other hand, λ2 [(3.10)] is a measure of the excess temperature,

Tex
z ≡ (T − Tz)=−ζT ≡ 2λ2T > 0, (6.1)

along the vorticity direction (which is proportional to the out-of-plane eigenvalue
ζ of M). The latter implies that, when a granular material is sheared, the kinetic
temperature along the vorticity direction is always smaller than the mean temperature
(T = (Tx + Ty + Tz)/3). This theoretical result has been verified via a comparison of
event-driven simulations for a sheared granular fluid, see figure 6. It is seen that the
excess temperature Tex

z decreases with increasing density but remains positive for all
ν and e. Due to the linear relationship (6.1) between λ2 and Tex

z , λ2 will henceforth
be termed as excess temperature too.
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0 0.1 0.2 0.3 0.4 0.5

100

10–1

10–2

101

FIGURE 6. Variation of excess temperature (6.1) with density for different restitution
coefficient: e=0.9 (solid line) and e=0.1 (dashed line). While the lines denote the present
theory, the circles denote the simulation data of Alam & Luding (2005) for e= 0.9.

6.1. The Boltzmann/dilute limit
To see whether the anisotropy of M can be tied with the non-Newtonian nature of
the stress tensor, we recall that the exact expression for the stress tensor (2.8) is
P ≡ ρM in the dilute limit. The first normal stress difference is given by

(Pxx − Pyy)= ρ(Mxx −Myy)∼ η sin 2φ > 0, (6.2)

while the second normal stress difference is

(Pyy − Pzz)= ρ(Myy −Mzz)∼ 3λ2 − η sin 2φ 6 0 (6.3)

and both are non-zero, and hence the stress tensor is non-Newtonian if φ 6= 0 and/or
η 6= 0 and λ 6= 0. Therefore, the anisotropy of M gives rise to finite normal stress
differences, resulting in the stress tensor being non-Newtonian.

It is clear from (6.2)–(6.3) that the normal stress differences and the anisotropy
of the second-moment tensor are intertwined with each other. If the eigendirections
of M are coaxial with those of the shear tensor D, i.e. φ = 0, the first normal stress
difference (6.2) vanishes; however, the second normal stress difference (6.3) can still
be non-zero (=3λ2) even if φ = 0 since the ‘excess’ temperature (6.1) along the
vorticity direction could differ from zero in USF (see figure 6). Therefore, the origin
of N1 is tied to the ‘non-coaxiality’ between the eigendirections of M and D, but that
of N2 is the non-zero ‘excess’ temperature along the vorticity direction.

6.2. Effect of density
In this section we discuss the effects of finite density on the origins of two NSDs.

6.2.1. First normal stress difference
The kinetic and collisional contributions (N∗1 = Nk∗

1 + Nc∗
1 ) to the first normal stress

difference (5.14) are given by

Nk∗
1 = 2η sin(2φ)νT∗, (6.4)

Nc∗
1 =

8(1+ e)νg0

105

[
21− 8√

π
ηR cos(2φ)

]
ηsin(2φ)νT∗. (6.5)
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Note that both (6.4) and (6.5) vanish in the limits of η→ 0 and/or φ → 0: while
the former represents the limit of vanishing temperature anisotropy in the shear plane
(3.10), the latter corresponds to the eigendirections of the second-moment tensor M
and the shear tensor D being coaxial (viz. figure 2). Therefore we conclude that the
origin of first normal stress difference is tied to (i) the ‘finite’ temperature anisotropy
and/or (ii) the ‘non-coaxiality’ between the eigendirections of M and D at any density.

The leading terms in both (6.4) and (6.5) are

η sin 2φ =O(γ̇ 2), (6.6)

of Burnett order in the shear rate. The leading-order corrections in (6.5) are

R2η sin(2φ)
(η

R
cos(2φ)

)
=O(γ̇ 4). (6.7)

It is noteworthy that the excess temperature (6.1), Tex
z ∝ λ2, does not affect the kinetic

part of the first NSD, but it affects the collisional part of the first NSD at sixth order
and beyond in the shear rate.

6.2.2. Second normal stress difference and its sign reversal
The kinetic and collisional components of the second normal stress difference (5.15)

at O(ηmλnRp sinq(2φ),m+ n+ p+ q 6 4) are given by

Nk∗
2 = [3λ2 − η sin(2φ)]νT∗, (6.8)

Nc∗
2 =

32(1+ e)ν2T∗g0

1155

[
264

(
1
2
+ 7
ν

Nk∗
2

)
R2 + 1√

π
ηR cos 2φ

× (66+ 6η2 − 64R2 − 33λ2 + 11η sin 2φ)
]
, (6.9)

where T∗ is the dimensionless temperature (5.3). In the limit of vanishing of the
‘shear-plane’ temperature anisotropy (η→ 0) and/or the coaxiality (φ→ 0) between
the eigendirections of M and D, we can simplify (6.8) and (6.9) into

Nk∗
2 = 3λ2νT∗ ∝ Tex

z > 0, (6.10)

Nc∗
2 =

4(1+ e)ν2T∗g0

35
[32R2 + 21λ2]> 0. (6.11)

Both (6.10) and (6.11) hold strictly in the dense limit since η and φ approach zero as
ν→ νmax. Note that even the kinetic part of the second normal stress difference (6.10)
remains positive in the dense limit as long as λ2 ∝ Tex

z > 0 (see figure 6).
It is evident from (6.10) and (6.11) that the second normal stress difference in

the dense limit (6.11) remains finite and positive, which is in contrast to the zero
first normal stress difference in the same limit. Moreover, even if λ2 = 0 and η = 0,
N2 ≡ Nc∗

2 remains finite as ν→ νmax as long as the shear rate is finite (R2 > 0) and
hence this is ‘shear induced’. Therefore, the origin of non-zero second normal stress
difference in the dense limit is tied to the imposed shear field.
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FIGURE 7. (a) Variation of (3λ2 − η sin 2φ) with density ν for two values of restitution
coefficient e = 0.9 (thick solid line) and e = 0.1 (dashed line); the arrows locate the
respective critical density at which the above quantity is zero. (b) Variation of the critical
density νk

cr, at which η sin 2φ= 3λ2, with e; the circles denote numerical solution and the
solid line is a linear fit (6.13).

Equation (6.8) indicates that the Nk∗
2 can be positive or negative depending on the

relative magnitudes of 3λ2 and η sin(2φ) and can undergo a sign change at a finite
density if

3λ2 − η sin(2φ)= 0. (6.12)

(Recall from figure 5b that N2 undergoes a sign reversal at a finite density.) The
density variation of (6.12), obtained by solving (3.30)–(3.33) numerically, as depicted
in figure 7(a), clarifies the above point: 3λ2 < η sin(2φ) in the dilute limit and
3λ2 > η sin(2φ) in the dense limit for any value of the restitution coefficient. The
variation of the critical density νk

cr, at which (6.12) holds, with the restitution
coefficient is shown in figure 7(b) – clearly, νk

cr(e) is a decreasing function of e
and can be fitted via the following linear function:

νk
cr(e)= 0.27− 0.086e, (6.13)

denoted by the solid line in figure 7(b). Since Nc
2= 0 at ν = 0 and is a monotonically

increasing function of ν, the critical density, νcr, at which total second normal stress
difference (N2=Nk

2+Nc
2= 0) changes sign from negative to positive would be slightly

lower than (6.13).
In conclusion, the second normal stress difference is negative and positive in the

dilute and dense limits, respectively, and the ‘sign reversal’ of N2 at some finite
density is directly tied to the sign reversal of its kinetic component Nk

2. The above
analysis further confirms that the origin of N2 is tied to the ‘excess’ temperature
(Tex

z ∝ λ2, viz. (6.1)) along the mean vorticity direction in the dilute limit, but its
origin in the dense limit is tied to the imposed shear field.

7. Summary and outlook
The motivation to develop a higher-order (non-Newtonian) theory came from the

fact that the normal stress differences remain order-one quantities (see figures 1 and 5)
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in a granular fluid and hence cannot be neglected. This ruled out Navier–Stokes-order
models (for which N1 = 0 = N2) and the ‘minimal’ model that incorporates normal
stress differences is the well-known ‘10-moment’ model of Grad (1949) in terms
of an extended set of 10 hydrodynamic fields (density, velocity vector and the
second-moment tensor) as detailed in § 2. The constitutive relations were then derived
by choosing the anisotropic/triaxial Gaussian as the single-particle distribution function
which is the zeroth-order distribution function (Goldreich & Tremaine 1978; Araki
& Tremaine 1986; Jenkins & Richman 1988; Richman 1989; Lutsko 2004; Saha
& Alam 2014) for a non-equilibrium system like the steady uniform shear flow of
smooth inelastic spheres. The equation for the second-moment tensor has been solved
(i) exactly at the Burnett order (§ 4.1) and (ii) via a regular perturbation expansion at
super-Burnett orders (§ 4.2), yielding closed-form expression for the ‘non-Newtonian’
stress tensor at finite densities which is likely to be valid far away from the limit of
nearly elastic collisions.

We found that the normal stress differences and the anisotropy of the second-
moment tensor M = 〈CC〉 (where C= (c− u) is the peculiar velocity of a particle, c
is its instantaneous velocity and u is the coarse-grained/hydrodynamic velocity) are
intertwined with each other in uniform shear flow. This can be easily appreciated
by focusing on the dilute limit of shear flow for which the following relations hold
(see (5.22) and appendix B.2):

η2 = 1
12(6+ N1 + 2N2)N1 (7.1)

λ2 = 1
6(N1 + 2N2) (7.2)

sin 2φ =
√

3N1

(6+ N1 + 2N2)
. (7.3)

Therefore, the temperature anisotropy in the shear plane (η), the non-coaxiality
angle (φ) and the excess temperature (Tex

z = (T − Tz) ∝ λ2, where Tz and T are the
z-component and the average of the granular temperature respectively) along the mean
vorticity (z) direction vanish if the two normal stress differences are zero. This results
in an ‘isotropic’ second-moment tensor for which only the granular temperature is a
field variable, in addition to density and velocity, leading to the standard NS-order
hydrodynamic model.

A detailed comparison between the ‘exact’ numerical solution of the second-moment
equation and two different analytical solutions has been made (see figures 3–5). We
found that the super–super-Burnett terms (i.e. fourth order in the shear rate) must
be retained in the constitutive relations to quantitatively predict the behaviour of the
pressure (p), the shear viscosity (µ) and two normal stress differences (N1 and N2)
for all values of density (ν) and restitution coefficient (e). Furthermore, a similar
comparison with the event-driven simulation data of Alam & Luding (2005) for the
uniform shear flow of inelastic hard spheres confirmed the reliability of our theoretical
expressions for transport coefficients over a large range of density (see figures 1
and 4). Therefore we conclude that the beyond-Navier–Stokes contributions up to the
super–super-Burnett order must be retained in all transport coefficients so as to make
them valid for a large range of density and restitution coefficient.

The ‘scaled’ first normal stress difference (N1 = (Pxx − Pyy)/p, scaled with respect
to the mean pressure) is positive in the dilute limit and decreases monotonically
to zero in the dense limit. In contrast, the scaled second normal stress difference
(N2= (Pyy−Pzz)/p) is negative and positive in the dilute and dense limits, respectively,
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and the sign change of N2 at some finite density is directly tied to the sign change of
its kinetic component Nk

2. In physical terms, the vanishing of the first normal stress
difference is tied to the ‘coaxiality’ (i.e. the non-coaxiality angle is φ = 0) of the
eigendirections of the shear tensor D= (∇u+ (∇u)T)/2 and the second-moment tensor
M . On the other hand, the second normal stress difference can be non-zero even if
the above coaxiality condition (φ = 0) is satisfied since the ‘excess’ temperature
(Tex

z = (T − Tz)∝ λ2, where T and Tz are the average and z-component of the granular
temperature) along the mean vorticity (z) direction could differ from zero in uniform
shear flow.

Although the present theory can quantitatively predict the correct behaviour of
both first and second normal stress differences (N1 and N2) in addition to low-order
transport coefficients (shear viscosity and pressure) from the dilute to dense regimes
up to close to the freezing density (νf ∼ 0.5), the scaling of the transport coefficients
in the dense limit is found to be incorrect (see appendix E); for example, the shear
viscosity diverges like (νmax − ν)−δ with an exponent δ = 1 which is much different
from 2 (based on experimental and simulation data). The latter finding may not be
surprising since certain assumptions of the Enskog–Boltzmann equation are not likely
to hold in very dense flows with sustained contacts and correlated motions of particles
(Jop, Forterre & Pouliquen 2006; Kumar & Luding 2016). How the present theory
can be augmented, by incorporating velocity correlations (Mitarai & Nakanishi 2007;
Alam & Chikkadi 2010) and related many-body effects in the kinetic equation so as
to push its upper limit of validity beyond the freezing density, remains to be seen
in future work. Nevertheless we believe that the extended hydrodynamic theory (in
terms of 10 hydrodynamic fields) can serve as a small stepping stone to formulate a
theory of flowing granular matter over the whole range of density which is likely to
hold at large dissipation levels. In future, this 10-moment theory must be completed
by deriving constitutive relation for the heat flux (Saha & Alam 2014) so as to apply
it to non-uniform shear flows too.

Acknowledgements

M.A. acknowledges support from JNCASR, and S.S. acknowledges the PhD-
fellowship (2011–2016) from the ‘Council of Scientific and Industrial Research’
(CSIR), Government of India. We sincerely thank the referees for their constructive
comments as well as the editor for suggestions to improve presentation of this paper.

Supplementary materials

Supplementary materials are available at http://dx.doi.org/10.1017/jfm.2016.237.

Appendix A. Collision integrals of (3.30)–(3.33) and their algebraic form

Appendix A, with (A 1)–(A 17), is available as supplementary materials.

Appendix B. The second-moment balance at third and fourth orders and its
solution

Retaining terms up to O(ηmλnRp sinq(2φ), m+ n+ p+ q 6 4) in the infinite series
for each integral (3.35)–(3.37) and substituting them into (3.30)–(3.33), we obtain the
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following set of coupled nonlinear algebraic equations:

1680
√

πηR cos 2φ − 3(1− e2)νg0(840+ 84η2 + 2688R2 + 672
√

πηR cos 2φ

+ 3η4 + 1024R4 − 128R2η2 + 768R2λ2 − 24η2λ2 + 252λ4 − 64η2R2 cos 4φ)

+ 64(1+ e)νg0R{21
√

πη cos 2φ + 4R(42− 2η2 + 12λ2 + 32R2 − η2 cos 4φ)} = 0

2310
√

πηR cos 2φ + (1+ e)νg0[32R2{66+ 8η2 − 165λ2 + 3e(66− 4η2 + 33λ2)}
− 9(3− e){η4 + 11η2(2− λ2)+ 66λ2(7− λ2)} + 1024(5+ 3e)R4

− 16Rη{33
√

π(4− 3e) cos 2φ − 4Rη(2− 3e) cos 4φ}] = 0

210
√

π(1+ λ2)R cos 2φ − (1+ e)νg0[12
√

π{7(1− 3e)+ 4(4− 3e)λ2

− 32(1+ e)R2}R cos 2φ + η{126(3− e)− 3(3− e)η2 + 36(3− e)λ2

+ 64(4− 3e)R2 − 32(5+ 3e)R2 cos 4φ}] = 0

105
√

π{η− (1+ λ2) sin 2φ} − 2(1+ e)νg0 sin 2φ[16(5+ 3e)ηR cos 2φ

− 3
√

π{7(1− 3e)+ 4(4− 3e)λ2 − 32(1+ e)R2}] = 0


(B 1)

for four unknowns η, λ2, R and φ, given that the restitution coefficient (e) and the
volume fraction (ν) are known. Equation (B 1) represent the second-moment balance
at the super–super-Burnett order since they contain all terms up to the fourth order in
the shear rate. Removing the underlined terms in the first two equations of (B 1), we
obtain the second-moment balance at the super-Burnett (third order in the shear rate)
order.

B.1. Perturbation solutions at finite density: beyond Burnett order
Appendix B.1, with (B 2)–(B 7), is available as supplementary materials.

B.2. Exact solution in the dilute limit
Let us consider the dilute limit (ν→ 0) of the second-moment balance (3.30)–(3.33)
which was analysed previously by Richman (1989). In this limit, the collisional
contribution to flux terms vanishes (e.g. Θαβ = 0) and consequently the stress tensor
is given by Pαβ = ρMαβ . Moreover, as ν→ 0, F(χ→ 0)= 1 and G(χ→ 0)=√π/2
(see (3.23)) it can be verified that the integrals Ĝαβ(ν→ 0)= 0 and Γx′y′(ν→ 0)= 0
vanish too. Therefore, the balance equations (3.30)–(3.33) for the second moment
simplify to

−4ηρT γ̇ cos 2φ = Ax′x′ + Ay′y′ + Az′z′,

−4ηρT γ̇ cos 2φ =−3Γ̂z′z′,

4(1+ λ2)ρT γ̇ cos 2φ = (Γx′x′ − Γy′y′),

2ρT γ̇ [η− (1+ λ2) sin 2φ] = Γx′y′ = 0.

 (B 8)

The last equation of (B 8) yields an expression for the non-coaxiality angle φ in
terms of η and λ:

η

1+ λ2
= sin 2φ ⇒ φ = 1

2
sin−1

(
η

1+ λ2

)
. (B 9)
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By evaluating the integrals on the right-hand side of (B 8) to within an error of
O(ηmλ2n,m+ n> 2), the remaining three equations simplify to

8π3/2Rη cos 2φ − 6
5(1− e2)πν(10+ η2 + 3λ4)= 0,

8π3/2Rη cos 2φ − 24
35(3− e)(1+ e)πν{η2 + 3λ2(7− λ2)} = 0,

35
√

πR(1+ λ2) cos 2φ − 3(3+ 2e− e2)νη(7+ 2λ2)= 0.

 (B 10)

The solutions for R and η are given by

R= 3(1− e2)ν

140
√

πη cos 2φ
(70+ 7η2 + 21λ4),

η2 = 3λ2(7+ 6λ2 − λ4)

6+ λ2
,

 (B 11)

where λ2 satisfies a cubic equation, which after truncating at the second order, takes
the form

λ4 +
(

7
e
+ 53

24
(e−1 − 1)

)
λ2 − 5

2
(e−1 − 1)= 0, (B 12)

yielding an approximate solution for λ2.
A comparison of the analytical solutions (B 9), (B 11), (B 12) for η, φ, R and λ2

with those of Richman (1989) have been made (not shown). We found that the present
solutions are better than those of Richman (1989) at lower values of the restitution
coefficient (e< 0.5), but are almost indistinguishable for e> 0.5.

Appendix C. Stress tensor and transport coefficients in terms of collision
integrals

The non-zero components of the dimensionless stress tensor in USF,

P∗ = P

ρpU2
R
=
P∗xx P∗xy 0

P∗yx P∗yy 0
0 0 P∗zz

 , (C 1)

can be expressed in terms of the collision integral J δp
αβγ (η, R, φ, λ2) as defined in

(3.36),

P∗xx = νT∗
[
(1+ λ2 + η sin 2φ)+ 3νg0(1+ e)

2π3/2
(J 30

002 − sin 2φJ 30
012 − cos 2φJ 30

102)

]
,

(C 2)

P∗yy = νT∗
[
(1+ λ2 − η sin 2φ)+ 3νg0(1+ e)

2π3/2
(J 30

002 + sin 2φJ 30
012 + cos 2φJ 30

102)

]
,

(C 3)

P∗zz = νT∗
[
(1− 2λ2)+ 3νg0(1+ e)

π3/2
J 12

002

]
, (C 4)

P∗xy = νT∗
[
−η cos 2φ + 3νg0(1+ e)

2π3/2
(cos 2φJ 30

012 − sin 2φJ 30
102)

]
. (C 5)
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In (C 1), UR=2γ̇ σ is the reference velocity scale and ρp=ρ/ν is the material/intrinsic
density of particles. The series expansion for J δp

αβγ given in (A 10)–(A 14) can be
substituted in (C 1)–(C 5) to obtain final expressions for Pαβ as in (5.4), (5.9)–(5.11).

The dimensionless pressure is given by

p∗ ≡ P∗xx + P∗yy + P∗zz

3
= ν

64R2

[
1+ νg0(1+ e)

π3/2
J 10

002

]
, (C 6)

where T∗ is the granular temperature

T∗ = T
UR

2 =
1

64R2
. (C 7)

The expression for the dimensionless shear viscosity is given by

µ∗ = νT∗
[
η cos 2φ − 3νg0(1+ e)

2π3/2
(cos 2φJ 30

012 − sin 2φJ 30
102)

]
. (C 8)

The ‘scaled’ first and second normal stress differences are defined with respect to
mean pressure via

N1 = Pxx − Pyy

p
and N2 = Pyy − Pzz

p
. (C 9a,b)

Appendix D. Source of the second-moment tensor
Appendix D, with (D 1)–(D 4), is available as supplementary materials.

Appendix E. Scaling of transport coefficients in the dense limit
There exist hundreds of recent papers on non-Brownian suspensions and dense

granular media (Brady & Morris 1997; Singh & Nott 2003; Boyer et al. 2011;
Couturier et al. 2011; Trulsson et al. 2012; Dbouk et al. 2013; Denn & Morris
2014; Suzuki & Hayakawa 2015) dealing solely with ‘how the shear viscosity
diverges near the jamming/maximum-packing density’. Based on numerous simulation
and experimental data, there is now a consensus that the shear viscosity follows a
power-law scaling,

µ∼ (νmax − ν)−δ, (E 1)

with the exponent having a value close to δ= 2 (for non-Brownian systems); here νmax
is identified with the jamming density having a value close to the random packing
density 0.64. In the following we decipher the scaling of the transport coefficients
near the maximum packing limit based on our theory.

It is straightforward to verify that both pressure and viscosity scale with g0 (the pair-
correlation function at contact) in the dense limit. Using Torquato’s form (Torquato
1995) for an ‘equilibrium’ hard-sphere system, we have

µ, p∼ g0 ∼ (νmax − ν)−1. (E 2)

This exponent is much different from 2 (Boyer et al. 2011) which follows from many
experiments and simulations on non-Brownian suspensions. Among two normal stress
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differences, the first normal stress difference decays to zero as ν→ νmax but the second
normal stress difference diverges like

N∗2 = (Pyy − Pzz)∼ pN2 ∼ (νmax − ν)−1, (E 3)

since N2 remains finite at ν = νmax (see figure 5b).
Here we put forward some tentative arguments, based on ad hoc assumptions, to

reason out why the scaling exponent for viscosity should be greater than unity. It
is known from experiments and simulations that the onset of jamming is associated
with a diverging length scale, LJ ∼ (νmax − ν)−α, with α ∼ 0.73 (Hatano 2009). This
is clearly tied with a lesser amount of dissipation of kinetic energy (D ∼ L−1

J ) as
ν→ νmax and hence the temperature is likely to diverge as T ∼ (νmax − ν)−2α which
follows from the energy balance equation. (The present theory predicts a finite, shear-
rate dependent, temperature at ν→ νmax.) Incorporating the above information into the
expression of shear viscosity (µ∼ g0LJ

√
T) yields an exponent for the divergence of

viscosity as δ̃ = (1+ 2α)≈ 2.4.
It is known that the Enskog–Boltzmann equation incorporates only density

correlations via the pair-correlation function but the velocity correlations and
multi-particle collisions (as well as the ‘evolving’ anisotropic fabric networks
(Kumar & Luding 2016)) which are equally important in the dense limit, are
completely left out. Incorporating the correct dense-phase phenomenology into the
present theory surely requires additional assumptions starting from the BBGKY
(Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy or the Liouville equation. These
theoretical issues are left for the future.
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