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a b s t r a c t 

Oral squamous cell carcinoma (OSCC) is highly predominant in India due to excessive use of tobacco. Here 

we investigated Long INterpersed Element 1 (LINE or L1) retrotransposon activity in OSCC samples in the 

same population. There are almost 50 0,0 0 0 copies of L1 occupied around 30% of the human genome. 

Although most of them are inactive, around 150–200 copies are actively jumping in a human genome. L1 

encodes two proteins designated as ORF1p and ORF2p and expression of both proteins are critical for the 

process of retrotransposition. Here we have analyzed L1 ORF1p expression in a small cohort ( n = 15) of 

paired cancer-normal tissues obtained from operated oral cancer patients. Immunohistochemistry (IHC) 

with the human ORF1 antibody showed the presence of ORF1p in almost 60% cancer samples, and few 

of them also showed aberrant p53 expression. Investigating L1 promoter methylation status, showed 

certain trends towards hypomethylation of the L1 promoter in cancer tissues compared to its normal 

counterpart. Our data raise the possibility that L1ORF1p expression might have some role in the onset 

and progression of this particular type of cancer. 

© 2020 Elsevier Inc. All rights reserved. 
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ntroduction 

Retrotransposons are mobile genetic elements that move within

 genome using ribonucleic acid (RNA) as an intermediate to pro-

uce new insertions, which can disrupt genes and expand genomes

ue to increases in copy number [1,2] . Long INterperserd Element

 (LINE-1 or L1) is the only autonomously active retrotransposon

n the human genome, with around five hundred thousand copies
List Of Abbreviation Used In Manuscript: OSCC, O ral S quamous C ell 

 arcinoma; LINE-1, L ong IN terpersed E lement-1; ORF, O pen R eading F rame; IHC, 

 mmuno h isto c hemistry; RRM, R NA R ecognition M otif; RNA, R ibo n ucleic A cid; DNA, 

 eoxyribo n ucleic Acid; kDa, kilo Dalton; UTR, U n t ranslated r egion; TP53, T umor 

 rotein 53; PPs, processed pseudogenes; X-gal, 5–bromo–4–chloro–3-indolyl- β- d - 

alactopyranoside; IPTG, Isopropyl β- d -1-thiogalactopyranoside; SDS-PAGE, S odium 

 odecyl S ulphate- P olyacrylamide G el E lectrophoresis; NaCl, sodium chloride; 

APDH, G lycer a ldehyde 3- p hosphate d e h ydrogenase; ECL, E nhanced chemilumines- 

ence; HRP, H orse r adish p eroxidase; x g, times gravity; MCF-7, M ichigan C ancer 

 oundation-7; PBS, P hosphate B uffered S aline; BSA, B ovine S erum A lbumin; FFPE, 

 ormalin- F ixed P araffin E mbedded; EDTA, E thylene D iamine T etra- A cetic Acid; 

BST, T ris B uffered S aline- T ween; DAB, 3-3 -́ D ia a mino b enzidinetetrahydrochloride 

DAB substrate). 
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ccupying around 17% of the human genome [1–5] . Although; ex-

remely abundant, only a subset of L1s (~80–100) is retrotransposi-

ion competent L1s (RC-L1s), actively retrotransposing in any given

uman [6] . A RC-L1 is 6 kb in length and encodes two proteins

ORF1p and ORF2p). Both proteins are required for the process of

etrotransposition [7] . ORF1p encodes a protein with RNA binding

nd nucleic acid chaperone activities [8] , whereas ORF2 encodes a

rotein with reverse transcriptase (RT) [9] and endonuclease (EN)

10] activities. 

Due to their potential to function as insertional mutagens, L1s

re generally silenced in somatic cells through epigenetic and

ost-transcriptional mechanism such as heterochromatinization of 

1 sequences, CpG methylation in the L1 promoter, premature

ermination of L1 transcript, small RNA induced silencing, host

ellular factor-mediated retrotransposition inhibition and others 

11–14] . The L1 5 ′ -UTR contains 39 CpG sites, which when methy-

ated, are associated with repression of L1 RNA expression [14,15] .

owever, recent transgenic animal models and deep sequencing

tudies revealed that a subset of L1s escaped repression and result-

ng in high expression of these elements in germ cells, early stages

f development, certain regions of brain, and cancers [16-22] . 

Oral squamous cell carcinoma (OSCC) that arises from epithelial

ells represents 95% of all forms of head and neck cancer [23,24] .

https://doi.org/10.1016/j.cancergen.2020.01.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cancergen
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cancergen.2020.01.050&domain=pdf
mailto:prabhat.mandal@bt.iitr.ac.in
https://doi.org/10.1016/j.cancergen.2020.01.050
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It is the eighth most common cancer in the world, with a very

high mortality rate. The five-year survi val rate of patients after

surgery is around 50% [23,24] . The major risk factors for OSCC

include tobacco use, alcohol consumption and infection with hu-

man papillomavirus (HPV) [25–27] . Similar to all other types of

cancer, OSCC is thought to be initiated and progress by a series

of genetic alterations [28–30] . Whole-genome and exome sequenc-

ing revealed that several genes, like tumor protein 53 ( TP53) and

Notch, are frequently mutated in OSCC [28,29] . Aberrant deoxyri-

bonucleic acid (DNA) methylations, particularly at the promoter re-

gions, are common to all types of cancers. Numerous studies have

reported that hypermethylation of tumor suppressor promoters in

cancer leads to transcriptional silencing of these genes [31–34] . In

addition to, gene specific hypermethylation, global hypomethyla-

tion is observed during transformation [31] . Notably, retrotrans-

posons are often hypomethylated in cancer resulting in the expres-

sion of retrotransposon-encoded proteins [21,22,35–37] . 

While whole-genome sequencing (WGS) of tumor samples has

uncovered high rates of L1 retrotransposition in certain types of

cancer, particularly those of epithelial cell origin, the frequency of

new L1 insertions differs across cancers sampled to date (colorec-

tal, prostate, ovarian, multiple myeloma and glioblastoma) [38,39] .

Strikingly, in some selected cancers (e.g., colorectal cancer) the

number of somatic L1 insertion frequency is striking with more

than 100 retrotransposition events detected in one tumor [38] . Al-

though our understanding of L1 activity in cancers has increased

dramatically over the past five years, significant gaps remain in

our knowledge, including the spectrum of cancers displaying retro-

transposon expression. 

In this study, we investigated L1ORF1p expression and L1 pro-

moter methylation in 15 paired cancer normal tissues obtained

from oral cancer patients. We observed increased hypomethylation

of L1- promoter in cancer tissues compared to matched normal.

In addition, by immunohistochemistry (IHC) analysis, we detected

seven out of twelve samples showed a detectable level of L1 ORF1p

expression, many of which also display aberrant p53 levels. Collec-

tively, these data highlight the L1 retrotransposon as a novel factor

with the potential to contribute to the onset and progression of

OSCC. 

Materials and methods 

Specimen collection of tissue specimens 

All the paired normal cancer tissues were collected postopera-

tively following proper consent from the patient and their immedi-

ate family member from the Acharya Tulsi Regional Cancer Treat-

ment and Research Institute, Bikaner, Rajasthan, India. The details

of patients used in this study are present supplementary Table 1.

Following initial collection, samples were stored in RNA later so-

lution (Qiagen) at −20 °C. Subsequently, these tissues were used

for genomic DNA and protein isolation, along with the produc-

tion of formalin-fixed paraffin-embedded blocks. All investigations

were conducted in accordance with ethical principles embodied in

the declaration of tissue request and material transfer agreement

(IHEC No. BT/IHEC-IITR/2017/6673; Institute Human Ethics Com-

mittee (IHEC), Indian Institute of Technology Roorkee, Uttarakhand,

India). 

Genomic DNA extraction 

~100 mg tissue was washed with phosphate buffer saline (PBS)

followed by homogenization of the sample in liquid nitrogen using

a mortar and pestle. From homogenized tissue, genomic DNA was

extracted using the Blood &Tissue DNeasy mini kit (Qiagen) per
anufacturer instruction; DNA was eluted in 100 μl TE buffer. The

ntegrity of the DNA was checked in a 0.6% agarose gel. 

INE-1 promoter methylation analysis 

Bisulfite conversion of genomic DNA (1 μg) isolated from tis-

ue specimens was performed using the Epitect kit (Qiagen) fol-

owing manufacturer’s instructions. A 363 bp sequence within the

1 5 ′ UTR region (nucleotide number 209–572; L1HS, RepBase) [15] ,

hich contains twenty CpG dinucleotides, was amplified using

ethylated primer set (For: 5 ′ -AAGGGGTTAGGGAGTTTTTTT-3 ′ and

ev: 5 ′ - TATCTATACCCTACCCCCAAAA-3 ′ ). Briefly, the 50 μl PCR re-

ction was set up using 2X GoTaq green (Promega) and 200 ng

emplate bisulfite treated DNA. Untreated genomic DNA was used

s control. No PCR amplification with the untreated DNA template

uggested that the genomic DNA was 100% converted by bisul-

te treatment. PCR conditions as follows: one cycle at 94 °C for

0 s followed by 30 cycles at 94 °C for 20 s, 54 °C for 30 s

nd 72 °C for 60 s and finally one cycle at 72 °C for 5 min.

he PCR products were resolved in a 1.2% agarose gel. Bands

ere excised, gel extracted and subcloned in the pGEM-T vec-

or (promega) followed by transformation and blue-white screen-

ng. Plasmid DNA was extracted from positive colonies (white)

sing a mini-prep DNA kit (Qiagen). Clones were first checked

y electrophoresis in 1.2% agarose gel, and five clones from each

ample sent for Sanger sequencing using T7 promoter and SP6

niversal primers. The sequenced clones were first character-

zed using Repeat masker ( http://www.repeatmasker.org/cgi-bin/

EBRepeatMasker ), which allowed for subfamily annotation. Most

f the sequences belonged to either the L1-HS or L1 P1 subfamily.

he sequence was manually inspected to see whether C is intact

signature of methylated C) or changed (marked as unmethylated

) in the CpGs [40,41] . We used quantification tool for methyla-

ion analysis (QUMA) and BioEdit programs (freely available soft-

are) to analyze the bisulfite sequence data for methylation anal-

sis [42,43] 

ell culture 

HEK293T (human embryonic kidney) cells were maintained in

 CO 2 incubator at 37 °C and 5% CO 2 concentration in high glu-

ose Dulbecco’s modified Eagle medium (DMEM) with L – glu-

amine (Gibco) supplemented with 10% fetal bovine Calf serum and

00 U/ml penicillin-streptomycin. Cells were maintained for a few

assages and frozen as aliquots; for experiments, cells were sub-

ultured no more than a month to ensure a low number of popu-

ation doubling. 

rotein extraction and immunoblotting 

Whole-cell lysate was prepared from MCF-7 and HeLa cells us-

ng lysis buffer A [composition: 20 mM Tris-Cl pH 7.8,137 mM

odium chloride (NaCl) and 1% NP-40 supplemented with 1X pro-

ease inhibitor cocktail (Roche)]. The lysate was centrifuged at

500 × g (times gravity) for 5 min at 4 °C, and the supernatant

as transferred to a new 1.5 mL tube, which was stored at −70 °C
ntil further use. For the preparation of cancer and normal tissue

ysate, around 150–200 mg of frozen tissue was placed in liquid

itrogen and crushed using a mortar and pestle. Next, the sam-

le was transferred to a 1.5 ml tube containing 250 μl of cold

IPA buffer [150 mM NaCl, 1% NP-40, 0.5% Na-deoxycholate,0.1%

odium dodecyl sulfate (SDS), 50 mM Tris-Cl pH-8.0 with protease

nhibitor cocktail (Roche)]. The crushed tissue was then passed

hrough an 18-gage needle 5–8 times, followed by incubation on

ce for 45 min with intermittent mixing. Finally, the lysate was

entrifuged at 12,0 0 0 × g for 10 min at 4 °C; the supernatant

http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
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Fig. 1. Methylation analysis of the human L1 promoter in matched OSCC and normal tissues. (A) Scheme of a full-length active human L1 containing a 5 ′ -UTR en- 

coding an internal promoter, ORF1p and ORF2p, and a 3 ′ -UTR. The positions of 19 CpG residues analyzed in this study are shown as lollipops. Bisulfite analysis of eight 

paired normal cancer tissues to determine DNA methylation levels of the L1 promoter in OSCC tissues. The quantification tool for methylation analysis (QUMA) software 

was used to analyze bisulfite sequence data [42] . An average of 5 clones were Sanger sequenced for each patient sample. The position of each CpG residue is relative to 

the sequence of L1-Hs (Repbase) [15] . Open and closed circles denote unmethylated and methylated cytosines, respectively, in the CpG dinucleotides. Cross indicates the 

mutated CpG site. ( B) % Methylation of 8 OSCC patient tissues relative to matched samples. ( C) Methylation levels for each of the 19 CpG dinucleotides in the L1 promoter 

assayed across the matched tissues. ( D) Methylation index for the L1 promoter of OSCC compared to matched normal tissue. A two-tailed paired t -test calculated the 

p-value. 
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as transferred to a new tube and stored at −70 °C until further

se. The Bradford reagent (Bio-Rad) was used to estimate the pro-

ein concentration. Protein lysate was separated by sodium dodecyl

ulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Mini pro-

ein Tetra cell (Bio-Rad)) and wet transferred by applying 100 V

or 75 min (Bio-Rad mini trans blot electrophoretic transfer cell)

o nitrocellulose membrane (Millipore). Protein was detected us-

ng the following primary antibody. Polyclonal rabbit human α-

1 ORF1p (RRM) (1:33,0 0 0) [44] , α- g lycer a ldehyde 3- p hosphate

 e h ydrogenase (GAPDH) (1:60 0 0) (Santa Cruz Biotechnology), α-

LAG (1:30 0 0) (Sigma), α-p53 (DO7) Mouse Monoclonal antibody

Sigma-Aldrich). Secondary α-rabbit HRP and secondary α-mouse

RP were purchased from Jacksons Immuno Research Laboratories,

SA. Western blots were developed using enhanced chemilumines-

ence (ECL) western blotting detection reagent (Pierce) as per the

anufacturer’s instructions. The bands were detected by exposing

he blot on X-ray film (Hyper film from GE Healthcare. 

mmunohistochemistry (IHC) 

Paraffin-embedded normal and cancer tissue sections on

lass slides were deparaffinized, rehydrated in descending
rade of ethanol solutions before proceeding for antigen re-

rieval. The antigen retrieval step was adapted from "ab-

am protocol" available at ( http://www.abcam.com/protocols/

mmunocytochemistry-immunofluorescence-protocol ). Briefly, 

ntigen retrieval was performed in a common household vegetable

teamer (pressure cooker) using Tris-EDTA (ethylene diamine terta

cetic acid) antigen retrieval buffer (10 mMTris base, 1 mM EDTA

olution, 0.05% Tween 20, pH-9.0), then the slides were washed

 × 5 min each in tris buffered saline tween (TBST) (1X TBS con-

aining 0.025% Triton-X100) and then blocked in blocking solution

1% BSA (bovine serum albumin) in 1XTBST] for 1 h at room tem-

erature. After that, slides were incubated with polyclonal rabbit

-ORF1p (RRM) antibody (1:500 diluted in blocking reagent) at

 °C overnight in a humid chamber. The next day, slides were

ashed with 1XTBST and treated with 0.3% hydrogen peroxide to

uench any peroxidise present within the tissue. Slides were then

ncubated with secondary antibody ((1:500 dilution goat α-rabbit

orseradish peroxidise (HRP) (Jacksons Immuno Research)) for

n hour at room temperature. The slides were washed again

 × 10 min at room temperature with gentle agitation. Signals

ere visualized by adding 3–3 -́ Diaaminobenzidinetetrahydrochlo-

ide (DAB substrate) solution to the slides and counterstained

http://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol
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Fig. 2. Human L1 ORF1 protein expression in operated oral cancer samples. (A) Validation of human α-L1 ORF1p (RRM) antibody by western blotting in untransfected 

HeLa and MCF-7 cancer cell lines. Panel 1 showsen dogenous L1ORF1p in HeLa and MCF-7 cells. Immunoblot with α-GAPDH serves as a loading control (panel 2). (B) 

Immunocytochemistry with anti-L1ORF1p (RRM) antibody in untransfected HeLa and MCF-7 cancer cells. (C) IHC staining of oral cancer and matched normal tissues using 

α-L1 ORF1p (RRM) antibody. All images were collected at 40X magnification. N 

–Normal; C –Cancer; the number indicates the patient number (e.g., C1- Patient 1 oral cancer 

tissue; N1- patient 1 matching normal tissue). The cancer tissue section from patient number 2 not treated with primary antibody served as a negative control (bottom left 

panel); Hematoxylin and eosin staining of sample C2 served as a positive control (bottom right panel). 
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with haematoxylin, (Himedia) dehydrated with ascending order

of ethanol and mounted with DPX mounting media. Images were

captured using a light microscope (Leica Microsystems) equipped

with a camera. The intensity of DAB stained regions was measured

with ImageRatio software [45] and plotted as the percentage of

expression. 

Statistical analysis 

The methylation value was calculated as mC/(mC + hmC) for all

examined CpGs for a particular patient where hmC = hypomethy-

lated Cytosine and mC = methylated Cytosine. The hypomethy-

lation index for the LINE-1 elements in paired tumor and nor-

mal tissues was calculated as a mean value of mC/(mC + hmC)

for all examined CpG dinucleotides. The One-Sample Kolmogorov-

Smirnov test was used to evaluate fitness to a normal distribution

of continuous parameters. A Paired t -test was used to determine if

there was a statistically significant change in the methylation sta-

tus of LINE-1 in OSCC tumor versus paired normal (Supplementary

text). All analyses were performed using the sigma plot 13 package

(manufacturer or website. A p-value less than 0.05 ( p < 0.05) was

considered statistically significant. 
esults 

oss of DNA methylation at CpGs within the L1 5 ′ -UTR in oral cancer 

amples 

Epigenetic silencing of the L1 5 ′ -UTR by DNA methylation is a

ommon means to inactivate L1 expression and, ultimately, retro-

ransposition. Epigenetic alterations are frequent in cancers. In-

eed , several studies have reported reduced methylation of the

1 promoter in a variety of cancers [21,22,35–37] . To date, the

ethylated state of the L1 5 ′ -UTR in OSCC remained unexamined;

herefore, we performed bisulfite conversion analysis of genomic

NA across nine paired normal-cancer tissues followed by PCR,

ubcloning of amplicons, and Sanger sequencing to ascertain the

ethylation level of the L1 promoter (Supplementary Figure 1).

pecifically, we amplified a 363 bp region of the L1 promoter (nu-

leotide sequence 209–572, L1Hs from Repbase [15,40,41] , which

ontains 19 CpG sites and the resultant amplicons were sequenced

 Fig. 1 A; Supplementary Figure 1A). For each sample pair (e.g.,

SCC/matched normal), five independent clones were sequenced

 Fig. 1 A). Our sequence analysis uncovered that most of the L1

mplicons belonged to the major active L1 subfamily, L1-Hs (Sup-

lementary text; Supplementary Table 2), suggesting that we were

racking potentially active L1s in the tumor tissues. The bisulfite



S. Budania, D. Sur and J. Nangal et al. / Cancer Genetics 244 (2020) 21–29 25 

Fig. 3. ORF1p immunohistochemistry analysis across oral cancer samples using the human α-L1 ORF1p (RRM) antibody . ( A) IHC was performed for ten more OSCC 

samples to detect ORF1p expression. All pictures were taken in 40X magnification. ( B) Quantification of DAB signal intensities, a measure of ORF1p expression in different 

cancer samples. Values were calculated and plotted using ImmunoRatio software [44] . ( C) Detection of L1ORF1p by western blot analysis in whole tissue lysate obtained 

from sample C3. The corresponding matched normal (N3, lane 2) served as a negative control, and the total lysate from the MCF-7 cell line (lane 1) was used as a positive 

control. 
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equences were analyzed using the quantification tool for methy-

ation analysis (QUMA) [42] and BioEdit programs [43] . 

Of the eight paired samples analyzed, reduced methylation

f L1 5 ′ UTR was detected in five of the tumor tissues (Sam-

le S1, S2, S3, S4, and S15) relative to matched normal tissue

 Fig. 1 B). When comparing normal to matched OSCC tissue, S3

xhibited the largest difference in CpG methylation in the can-

er tissue, whereas S8 and S14 displayed no detectable difference

n methylation level between cancer and matched normal tissue

 Fig. 1 B). 
Further interrogation of specific CpGs within the amplified L1

 

′ -UTR sequence indicates that hypomethylation across CpG does

ot occur uniformly. Specifically, some positions are more prone

o loss methyl group (site: 4, 7, 8, 11, 13, 14, 15, 16 and 17),

hile several (site:1, 2, 3, 5, 6, 9, 18, and 19) show no signif-

cant differences in methylation state between the cancer and

aired normal ( Fig. 1 C). Quantification confirmed distinct differ-

nces in L1 5 ′ -UTR methylation when comparing normal (methyla-

ion index = 65 ± 2.8) to OSCC (44.5 ± 3.9) ( Fig. 1 D; Supplemen-

ary text). These data demonstrate reduced methylation of L1 pro-
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Fig. 4. L1 ORF1p expression in OSCC correlates with aberrant expression of p53. Five oral cancer samples (C3, C4, C6, C10, and C11) were tested for p53 expression by 

IHC. Among those five samples, four (C3, C4, C6, and C11) were ORF1p positive, and one (C10) was negative. Three (C3, C4, and C6) out of five samples showed significant 

p53 expression. Normal tissue from patient one (N1) served as a negative control for both ORF1p and p53 staining. 
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moter CpG dinucleotide in OSCC cancer tissues compared to paired

normal. 

To determine whether the loss of epigenetic silencing in the 5 ′ -
UTR is associated with L1 protein expression – a requirement for

the production of new insertions, we assayed tissue samples using

a polyclonal antibody specific to the RNA recognition motif (RRM)

domain of ORF1p [45] . As a control, western blot analysis was car-

ried out using lysates from MCF-7 (Michigan Cancer foundation-7),

a breast cancer cell line known to express L1 and one not known

to (HeLa, cervical cancer cell line) ( Fig. 2 A). Indeed, we observe a

robust band at 40 kgdalton (kDa) – the predicted size of ORF1p

– in MCF-7 cells but not in HeLa. Next, we performed immunocy-

tochemistry on MCF-7 and HeLa cell lines using the same ORF1p

antibody as an additional control. In agreement with our western

blot data, we observe staining almost exclusively in MCF-7 cells

( Fig. 2 B). Similar to previous reports, we observe ORF1p primarily

in the cytoplasm [46–51] . 

The five tissue samples displaying hypomethylated L1 5 ′ -UTRs

were further characterized by immunohistochemistry to assay,

whether loss of epigenetic silencing is associated with increased

L1 protein expression. Indeed, in three of these tissues (S2, S3, and

S4) we observe significant staining using an antibody specific for

the RRM domain of ORF1p ( Fig. 2 C and Fig. 3 A), supporting a link
 p  
etween hypomethylation of the L1 5 ′ -UTR and L1 protein expres-

ion in OSCC. 

etectable expression of L1 ORF1p in oral cancer samples 

Next, we tested how common, L1 ORF1p expression is across

SCC samples. To this end, we carried out IHC on a total of twelve

ost-operated oral cancer samples. The neoplastic nature of all

ancer samples used in this study was confirmed by hematoxylin

nd eosin staining (H&E staining). A representative of this stain-

ng is shown in Fig. 2 C (right bottom panel). Using the anti-ORF1p

ntibody, we detected some level of expression in over half of

ur samples (7 out of 12; 58%)( Fig. 2 C, Fig. 3 ). Supporting cancer-

pecific expression in OSCC, we did not observe any staining us-

ng anti-ORF1p in normal oral tissues tested ( Fig. 2 C). Incubation

f a cancer tissue section from patient 2 (C2) without primary an-

ibody functioned as a negative control ( Fig. 2 C, left bottom panel).

f the 12 samples screened here, we found sample C3 ( Fig. 3 A) dis-

layed the most intense staining, samples C2, C4, C6, and C7 exhib-

ted moderate expression ( Fig. 2 C and Fig. 3 A) and low expression

as visible in samples C9 and C11 ( Fig. 3 A and Fig. 3 B). Further-

ore, ORF1p positive tissues revealed that in sample C3 (high ex-

ression), ORF1p appeared predominantly in the nucleus ( Fig. 3 A).
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ikewise, sample C2 and C4 (moderate expression) also showed

uclear staining with anti-ORF1p ( Fig. 2 C and Fig. 3 ). In contrast,

n low expressing samples, our IHC indicates that ORF1p is mainly

ytoplasmic. To complement our IHC analysis, we performed west-

rn blot analysis using total protein lysate from patient matched

ormal and OSCC tissue. Consistent with the IHC for sample 3, we

etected a robust ORF1p band in cancer lysate ( Fig. 3 C, lane C3)

hile no band was observed in the lane loaded with lysate from

ormal tissue ( Fig. 3 C, lane N3). Protein lysate from MCF-7 cells

erved as a positive control ( Fig. 3 C, lane MCF-7). These data sug-

est that in our limited number of operated oral cancer samples

 n = 12), around 60% showed L1 ORF1p expression. 

berrant TP53 expression in oral carcinoma 

Our knowledge of the mechanisms regulating L1 retrotransposi-

ion activity is incomplete. A recent study reported a positive cor-

elation between TP53 mutation and L1 protein expression in sev-

ral types of tumors [39,52] . Indeed Rodic et al. [39] demonstrated

hat the aberrant expression of TP53 is strongly associated with

1 expression in lung, ovarian, and pancreatic carcinoma. Analysis

f TP53 expression in ORF1p positive oral carcinoma samples, we

etected TP53 by IHC in three out of the four of the IHC positive

amples (C3, C4, C6, and C11) but not an ORF1p negative sample

C10) ( Fig. 4 ). Furthermore, no ORF1p or TP53 was detected in nor-

al buccal mucosa tissue from patient number one (N1) ( Fig. 4 ).

hese data suggest that L1 ORF1 protein expression in OSCC might

ave some link with aberrant TP53 expression. 

iscussion 

1 protein expression is associated with hypomethylation of the L1 

romoter in OSCC 

A hallmark of cancer is an altered epigenetic landscape, which

ncludes global hypomethylation and locus-specific hypermethyla-

ion [31,53–55] . Recent studies have reported that in many can-

ers, the L1 and Alu retrotransposons are heavily hypomethylated

nd thereby considered a surrogate marker for global DNA hy-

omethylation [21,22,35–37] . Our bisulfite analysis ( Fig. 1 ) with

SCC samples indicates hypomethylation of the L1 5 ′ -UTR, the re-

ion responsible for the L1 promoter activity. Notably, of the eight

aired normal cancer samples assayed here, four displayed both

ignificant hypomethylation throughout the CG-rich L1 promoter

nd upregulation of L1ORF1p. Previous work with oropharyngeal

quamous cell carcinoma (OPSCC) samples highlights that the hy-

omethylation of the L1 promoter is extremely common and can

e used as a marker to assess the risk of early post-treatment

elapse [21] . The same study also showed the L1 promoter hy-

omethylation is increased in cases of HPV 16 negative samples.

erhaps, HPV16 infection contributes in some manner to L1 pro-

oter methylation and L1 transcription [21] . The fifteen OSCC sam-

les studied here were not checked for HPV infection; therefore,

t is unknown if HPV infection has any correlation with L1-ORF1p

xpression. Further, studies will elucidate the impact of L1 hy-

omethylation on L1 protein expression and the number of new

nsertions events in cancers like OSCC. 

RF1p expression is common in OSCC 

It has long been hypothesized that L1 retrotransposition activity

ay contribute to the onset and progression of cancer [53] . Only

ecently, with advances in DNA sequencing and effective reagents

e.g., antibodies reactive against L1 proteins), have significant de-

elopments been made in our understanding of L1 biology in can-

er. Indeed, several recent studies have demonstrated that L1 retro-
ransposition is quite common in human cancers [39,49–51] . Like-

ise, it has been shown that about half of common cancers ex-

ress human L1 ORF1p [36,39] . Here, we build on these studies

y characterizing L1 ORF1p expression in OSCC samples. In addi-

ion to a dearth of data for L1 expression in OSCC, we chose to

ocus on this subtype of head and neck cancer because of its high

revalence, particularly among Indian patients [23–25] . Our analy-

is of 12 patient samples revealed that ~60% (7/12) are positive for

1 ORF1p expression. These data are in agreement with previous

haracterization of head and neck cancer samples, which identified

61% positive for ORF1p [39] . 

Although localization studies have primarily observed ORF1p in

he cytoplasm, a limited number of cells do occasionally display

uclear localization [47–51] . In the IHC analysis with cancer tis-

ues, we observe ORF1p in both the nucleus and the cytoplasm.

pecifically, we see strong staining of nuclear ORF1p in three (C2,

3 and C4) out of the 12 samples tested ( Fig. 2 C and Fig. 3 A). Sev-

ral recent studies have reported nuclear localization of L1ORF1p

57–60] . While ORF1p is absolutely required for retrotransposition

n cis [7] , it is unclear currently whether increased nuclear localiza-

ion of ORF1p is associated with an increase in insertion frequency.

nterestingly, studies of breast cancer using murine models and hu-

an samples have reported L1 proteins (ORF1p and ORF2p) in the

ucleus in advanced stages of cancer [49–51] . Importantly, it has

een reported that the samples associated with nuclear localiza-

ion of L1 proteins showed very poor clinical outcome [49] . 

umor suppressor p53 protein might have some role in L1 activation 

n OSCC 

Mutations in p53 and its aberrant expression are common in

lmost every type of cancer [56,61] . Recent reports have shown

hat p53 can restrain retrotransposons and that this activity is

volutionarily conserved [52] . Rodic et al. [39] reported that up-

egulation of ORF1p in cancer tissues is correlated with highly ex-

ressed mutant p53. Consistently we observe elevated p53 expres-

ion in only ORF1p positive samples but not tissues where ORF1p

as below the level of detection. Together, these data warrant fur-

her investigation into a potential role of mutant p53 might in L1

etrotransposition in OSCC. Although future studies, including L1

nsertion analysis (e.g. L1-seq), will address whether L1 contributes

o OSCC genome evolution, alternative functions for ORF1p, includ-

ng its RNA-binding activity independent of retrotransposition in

SCC should not be dismissed. 
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