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1 Introduction

Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression and intelligibility improvement.
Spectral subtraction (SS) algorithm introduced by Boll [1] is still the most

preferred speech enhancement algorithm because of simple and reliable design,
which makes it the best choice for real-time application, e.g., online conferencing
or audio calling. SS algorithm is easily implementable at moderate computing plat-
forms, e.g., DSP processor [2] or FPGA [3], which makes this algorithm a better
choice for hearing aids or speech assistive devices. In the SS algorithm, the noise
component is subtracted from the spectrum of noisy speech. SS is still an active
research area of speech enhancement, used in combination with other techniques like
deep recurrent neural network [4], least mean square adaptive filter [5], statistical
models [6], deep neural network [7, 8], orthogonal matching pursuit [9], etc.
If clean speech x(n) is corrupted by additive noise d(n), then noisy speech y(n) is

given by 1.

y(n) = x(n)+ d(n) (1)

The approximate relationship between spectral power of clean speech, noise, and
noisy speech is given by 2.

R. Kumar (B) ·M. Tripathy · R. S. Anand
Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
e-mail: rkumar17@ee.iitr.ac.in

M. Tripathy
e-mail: manoj.tripathy@ee.iitr.ac.in

R. S. Anand
e-mail: r.anand@ee.iitr.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
S. Kalya et al. (eds.), Advances in VLSI, Signal Processing, Power Electronics, IoT,
Communication and Embedded Systems, Lecture Notes in Electrical Engineering 752,
https://doi.org/10.1007/978-981-16-0443-0_18

221



222 R. Kumar et al.

Fig. 1 General spectral
subtraction algorithm

|Y (w)|2 = |X (w)|2 + |D(w)|2 (2)

where Y(w) represents noisy spectrum, X(w) represents clean speech spectrum, and
D(w) represents noise spectrum. A general methodology used in the SS algorithm is
shown through the block diagram in Fig. 1. The term D̂(w) denotes estimated noise
spectrum, which is estimated during silence intervals, i.e., when speech is absent.
In the simplest form, SS can be formulated as shown in 3 to get the estimated

clean speech spectrum X̂(w).

���X̂(w)
���
2
= |Y (w)|2 − α

���D̂(w)
���
2

(3)

Here,α(α≥ 1) ensures subtraction result non-negativevalue. However, this results
in musical noise and removes residual noise in noise only region, which is a must
for speech’s naturalness. To remove the mentioned problem, Berouti et al. [10] have
proposed the parametric spectral power subtraction algorithm, as described in 4.

���X̂(w)
���
2
=





|Y (w)|2 − α

���D̂(w)
���
2
if |Y (w)|2 ≥ (α + β)

���D̂(w)
���
2

β

���D̂(w)
���
2

else
(4)
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Here, β(0 < β � 1) avoids isolated peaks in spectrum to suppress musical noise.
The noisy phase,∠Y (w) is used in the final step because phase information is almost
unchanged except at very low SNR [11] as shown in 5.

X̂(w) =
���X̂(w)

���e∠Y (w) (5)

SS performance degrades at low SNR conditions [12]. Several modified SS algo-
rithms have been proposed likemulti-band SS [13], reduced delay convolution, adap-
tive averaging SS [14], and geometric SS [15] to deal with limitations of the SS
algorithm.
From Fig. 1, it is clear that the performance of the SS algorithm greatly depends

on noise estimation; hence, better the noise estimation, better will be performance
[16, 17]. Other enhancement techniques also require prior noise information, e.g.,
the probability distribution of noise is assumed to be known in Wiener filter [18] and
MMSE algorithm [19] or it assumes that noise and speech have independent spectral
feature as in the case of subspace approach [20].
Martin and Cohen [21] has introduced the improved minima controlled recursive

averaging (IMCRA) algorithm, which performs better than all methods mentioned
earlier. It estimates noise even in speech-dominant frames and updates noise power
recursively. It uses minima tracking of smoothed periodogram for noise estimation.
The algorithm presented in the paper use speech characterize to use as a clue to

locate noise-dominant frame. Recently developed compressive sensing (CS) [22, 23]
exploits signal characteristic. Equation 6 represents a compressible signal x ∈ RN in
sparsifying basis ψ = [ψ1, ψ2,...ψN ] while in 7, xT represent reconstructed speech
by keeping T largest coefficients of X where T � N.

x =
N�

i=1
X (i)ψ(i) (6)

xT =
T�

i=1
XT (i)ψT (i) (7)

The signal x(n) will be sparse if reconstruction error (RE) as shown in 8 is exactly
or nearly zero.

R.E. =
N�

i=1
(x(i)− xT (i))2 (8)

A CS-based signal recovery problem from noisy measurement y is shown in 9
which is referred as l0 minimization problem.

xopt = argmin
x

1

2
�y − Ax�22 + λ�x�0 (9)
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Here, �x�0 represents number of non-negative elements in x. Above problem is
basically a search problem to recover sparse vector xopt which become exhaustive if
dimension of x is large. The alternate solutionmethod is to solve 9 by l1 minimization
as shown in 10.

xopt = argmin
x

1

2
�y − Ax�22 + λ�x�1 (10)

where l1-norm is defined as:

�x�1 =
�

i

|x(i)| (11)

It has been proved that if measurement is sufficient and A satisfy coherence prop-
erty, then l1 minimization problemwillgive same solution as l0 minimization problem
[24]. In the time domain, speech is not a sparse signal, but it shows some sparsity
level in some other domain like wavelets, discrete Fourier, or discrete cosine trans-
form domain [25]. The major advantage of CS-based SE is that it relies on signal
characteristics rather than noise characteristics; hence, performance does not change
whether the noise is stationary or non-stationary, which makes it useful for a real-
world scenario. In paper [26], authors have described all available methods to solve
the recovery problem defined in 9 and 10.

2 Iterative Soft Thresholding

Iterative thresholding is a technique commonly used to recover the signal from
degraded or under-sampled signal [27, 28] based on the fact that the signal is sparse
in some sparsifying domain. For solving l1-regularized least square problem in 10,
an algorithm, called split augmented Lagrangian shrinkage algorithm (SALSA) [29]
based on the iterative thresholding, has been utilized in the proposed algorithm.
The proposed algorithm for spectral denoising of time domain noisy signal yfr is

as follow:

Initialize : yfr, X = |A(yfr)|, λ, µ > 0, d = 0
Repeat

v = soft(X + d, λ/µ)−d
d = 1/µA(yfr − AT (v))
X = d + v
End (12)
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where A and AT represent Fourier and inverse Fourier transform, respectively, such
that AAT= I, I is identity matrix. The function soft(x, τ ) in 12, attenuates input value
x above threshold τ while values lower than threshold is made zero as shown in 13.

so f t (x, τ ) =






x − τ i f τ < x
0 i f − τ < x < τ
x + τ i f x < −τ

(13)

While X in 12 represents the spectral feature of a frame after thresholding. If a
particular frame contains a speech, then after thresholding, larger magnitude peaks
will be obtained. Thus, if |X|2 > Pmin, then that frame is a speech-dominant frame;
otherwise, it is noise-dominant frame. Where Pmin is the minimum power corre-
sponding to residual noise. If a frame is a noise dominant, then noise power is
updated recursively using 14.

D̂fr = a D̂fr−1 + (1− a)|A(yfr)|2, 0 < a < 1 (14)

where a is smoothing coefficient, D̂fr is estimated noise for current frame and D̂fr−1
is estimated noise previously. In the final step, estimated noise will be subtracted
from noisy spectrum using 4.
The proposed algorithm is similar to the minima tracking of periodogram as in

IMCRA; instead, it uses thresholding of spectra based on the sparsity of speech.

3 Experiment

A. Experiment Setup

In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken
by three male and three female speakers. All speech samples are sampled at 8 kHz.
Noises used in the experiment are babble, airport, exhibition, and car environment.
Noises have been added to clean speech with SNR from−10 to 10 dB. TheHamming
window has been used for windowing with 50% overlapping in all experiments.

B. Performance Evaluation Measures

For evaluation purposes, frequency weighted segmental SNR, fwSNR [31] is used
to assess the gain in quality. Perceptual evaluation of speech quality (PESQ) [32] has
been used tomeasure the overall quality of the enhanced speech. Short-time objective
intelligibility (STOI) [33] measures speech intelligibility by computing the average
correlation between the clean and enhanced speech temporal envelope in multiple
frames and bands.
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Table 1 Effect of smoothing coefficient on fwSNR performance of proposed algorithm in various
noise environment

Smoothing coefficient (a)

Noise type 0.4 0.5 0.6 0.7 0.8 0.9

Exhibition 4.8385 4.8544 4.8473 4.8540 4.8344 4.7881

Babble 4.8125 4.8114 4.8078 4.8062 4.7973 4.8039

Airport 4.7888 4.7944 4.8023 4.8052 4.8019 4.8086

Car 4.8939 4.9099 4.9098 4.9075 4.8901 4.8602

C. Effect of Smoothing Coefficient and Frame Length

Table 1 shows the effect of variation of smoothing coefficient, a on fwSNR gain
under various noise condition at 0 dB with frame length of 80 ms and Pmin = 5 ×
10− 2. The results shown in Table 1 indicate that, in most of the cases, the proposed
algorithm performs good when aε[0.5,0.8] for the chosen database.
Results in Table 2 show the effect of varying frame size on the speech quality of

the enhanced speech using the proposed algorithm for various noises under different
SNR levels. The value of smoothing coefficient, a is 0.7 for whole experiment with
Pmin =5 × 10−5. The bold numerals represent the highest value in the row. As it
is clear, fwSNR of enhanced speech increases as frame size increases from 20 to
80 ms in almost all cases. When frame size increases beyond 80 ms, there is a drop-
in intelligibility performance in terms of STOI though quality improves. It happens
because a larger frame contains both noise and voice activity components, which
cause the removal of voice components from the subsequent frame, resulting drop
in intelligibility.

D. Comparison of Proposed Algorithm

In this experiment, the proposed method with a frame size of 80 ms (adopted from
the previous experiment) is compared with the statistical approach IMCRA [21]
algorithms. All parameters in the proposed algorithm have kept constant except λ,
which represents weightage given to l1 regularization. For higher noise, λ is kept
high and vice versa.
Figures 2 and 3 show the performance comparison of the proposed algorithm with

the IMCRAalgorithm in term of fwSNR and PESQ for quality gain. In Fig. 2, fwSNR
of enhanced speech using the proposed algorithm is higher under all noisy conditions
at SNR level from−10 to 10 dB. In terms of PESQ, the proposed algorithm performs
better in all noise conditions except car noise at SNR level more than 0 dB (Fig. 3,
bottom-right).
Figure 4 shows the intelligibility performance comparison of the proposed algo-

rithm with the IMCRA algorithm in terms of STOI. It concludes that the STOI of
enhanced speech using the proposed algorithm is higher under all noisy conditions
at all SNR levels. The intelligibility improved significantly at negative SNR.



Iterative Thresholding-Based Spectral Subtraction Algorithm … 227

Table 2 Effect of frame length on fwSNR performance of proposed algorithm in various noise
environment

Noise type Input SNR (dB) Frame length

20 ms 40 ms 80 ms

Exhibition −10 2.1037 2.4046 2.4913

−5 2.9003 3.2261 3.3196

0 4.4816 4.6089 4.7172

5 6.7669 6.7235 6.6216

10 8.7186 8.9080 8.9671

Babble −10 2.1121 2.1258 2.1618

−5 2.9921 3.1548 3.2000

0 4.3492 4.6991 4.8108

5 6.5673 6.7860 6.9251

10 8.7706 9.3968 9.5200

Airport −10 1.8858 1.9671 2.0662

−5 2.9102 3.0546 3.1396

0 4.4212 4.6955 4.7928

5 6.3888 6.8418 6.9828

10 8.8742 9.4703 9.6426

Car −10 1.6770 1.9211 2.0912

−5 2.6459 2.9867 3.1784

0 4.1308 4.6079 4.8078

5 6.5275 6.6981 6.8895

10 9.2413 9.4334 9.3804

4 Conclusion and Future Work

The proposed algorithm extracts non-speech or noise dominated frames effectively in
various non-stationary noises like babble, exhibition, airport, and car noise compared
to the statistical approaches. The proposed algorithm’s performance does not depend
on noise characteristics; hence, performance remains the same whether the noise is
stationary or non-stationary.
The proposed method uses a larger smoothing coefficient (0.5 < a < 0.8) for

noise update, i.e., higher weightage to current frame noise estimate compared to the
previous frame; hence, it adapt to a large variation in noise power.
In this paper, the Fourier transform has been used as a sparsifying domain for

speech. Various other transforms, e.g., wavelet transform, will be explored in which
speech is more sparse than Fourier transforms in short time, thus, showing better
performance in shorter frame time. A shorter frame time will reduce delay for real-
time applications.
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Fig. 2 fwSNR improvement performance
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Fig. 3 PESQ improvement performance
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Fig. 4 Intelligibility improvement performance
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