Iterative Thresholding-Based Spectral
Subtraction Algorithm for Speech **Iterative Thresholding-Based Spectral
Subtraction Algorithm for Speech
Enhancement** Enhancement **Example Thresholding-Based Spectral**
 Rubtraction Algorithm for Speech
 Enhancement

Raj Kumar, Manoj Tripathy, and R. S. Anand

Raj Kumar, Manoj Tripathy, and R. S. Anand

Raj Kumar, Manoj Tripathy, and R. S
1 **Introduction**
Speech enhancement (SE) techniques fi

1 Introduction
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression an **1** Introduction
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression an **1 Introduction**
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression

Introduction
eech enhancement (SE) techniques find many applications such as automatic
eech recognition (ASR) systems, speaker recognition, online conferencing, and
ce-controlled devices for noise suppression and intelligi **1 Introduction**
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression **1 Introduction**
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression an **1 Introduction**
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
ovice-controlled devices for noise suppression an **I Introduction**
Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression and intelligibility Speech enhancement (SE) techniques find many applications such as automatic
speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression and intelligibility speech recognition (ASR) systems, speaker recognition, online conferencing, and
voice-controlled devices for noise suppression and intelligibility improvement.
Spectral subtraction (SS) algorithm introduced by Boll [1] is voice-controlled devices for noise suppression and intelligibility improvement.
Spectral subtraction (SS) algorithm introduced by Boll [1] is still the most
preferred speech enhancement algorithm because of simple and rel Spectral subtraction (SS) algorithm introduced by Boll [1] is still the most
preferred speech enhancement algorithm because of simple and reliable design,
which makes it the best choice for real-time application, e.g., on ferred speech enhancement algorithm because of simple and reliable design,
ich makes it the best choice for real-time application, e.g., online conferencing
audio calling. SS algorithm is easily implementable at moderate which makes it the best choice for real-time application, e.g., online conferencing
or audio calling. SS algorithm is easily implementable at moderate computing plat-
forms, e.g., DSP processor [2] or FPGA [3], which make mponent is subtracted from the spectrum of noisy speech. SS is still an active
earch area of speech enhancement, used in combination with other techniques like
p recurrent neural network [4], least mean square adaptive fi research area of speech enhancement, used in combination with other
deep recurrent neural network [4], least mean square adaptive filte
models [6], deep neural network [7, 8], orthogonal matching pursui
If clean speech x

If clean speech $x(n)$ is corrupted by additive noise $d(n)$, then noisy speech $y(n)$ is
given by 1.
 $y(n) = x(n) + d(n)$ (1)
The approximate relationship between spectral power of clean speech, noise, and
noisy speech is given by

$$
y(n) = x(n) + d(n) \tag{1}
$$

 $y(n) = 0$
The approximate relationship betwee
noisy speech is given by 2.
R. Kumar (\boxtimes) · M. Tripathy · R. S. Anand
Electrical Engineering Department, Indian Inst
e-mail: rkumar17@ee.iitr.ac.in
M. Tripathy
e-mail: manoj The approximate relationship between
noisy speech is given by 2.
R. Kumar $(\boxtimes) \cdot M$. Tripathy \cdot R. S. Anand
Electrical Engineering Department, Indian Institute-mail: rkumar17@ee.iitr.ac.in
M. Tripathy
e-mail: manoj.tri

e-mail: manoj.tripathy@ee.iitr.ac.in

e-mail: r.anand@ee.iitr.ac.in

R. Kumar (\boxtimes) • M. Tripathy • R. S. Anand
Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
e-mail: rkumar17@ee.iitr.ac.in
M. Tripathy
e-mail: manoj.tripathy@ee.iitr.ac.in
R. S. **R. Kumar (** \boxtimes **)** • M. Tripathy • R. S. Anand
Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
e-mail: rkumar 17@ee.iitr.ac.in
M. Tripathy
e-mail: manoj.tripathy@ee.iitr.ac.in
R. R. Kumar (ESI) · M. Tripathy · R. S. Anand
Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
e-mail: rkumar17@ee.iitr.ac.in
R. S. Anand
e-mail: nanoj.tripathy@ee.iitr.ac.in
R. S. Ana https://doi.org/10.1007/978-981-16-0443-0_18

221

e-mail: rkumar17@ee.iitr.ac.in

$$
|Y(w)|^2 = |X(w)|^2 + |D(w)|^2 \tag{2}
$$

Enhanced Speech
 $|Y(w)|^2 = |X(w)|^2 + |D(w)|^2$ (2)

ere $Y(w)$ represents noisy spectrum, $X(w)$ represents clean speech spectrum, and

w) represents noise spectrum. A general methodology used in the SS algorithm is

won through t Financed

under $|Y(w)|^2 = |X(w)|^2 + |I$

where $Y(w)$ represents noisy spectrum, $X(w)$ repre
 $D(w)$ represents noise spectrum. A general method

shown through the block diagram in Fig. 1. The ter

spectrum, which is estimated d ere $Y(w)$ represents notsy spectrum, $X(w)$ represents clean speech spectrum, and w) represents noise spectrum. A general methodology used in the SS algorithm is wwn through the block diagram in Fig. 1. The term $\hat{D}(w)$

$$
\left|\hat{X}(w)\right|^2 = |Y(w)|^2 - \alpha \left|\hat{D}(w)\right|^2 \tag{3}
$$

 $D(w)$ represents noise spectrum. A general methodology used in the SS algorithm is
shown through the block diagram in Fig. 1. The term $\hat{D}(w)$ denotes estimated noise
spectrum, which is estimated during silence interval shown infough the block diagram in Fig. 1. The term $D(w)$ denotes estimated noise
spectrum, which is estimated during silence intervals, i.e., when speech is absent.
In the simplest form, SS can be formulated as shown in spectrum, which is estimated during shelte linervals, i.e., when spectral is absent.

In the simplest form, SS can be formulated as shown in 3 to get the estimated

clean speech spectrum $\hat{X}(w)$
 $\left|\hat{X}(w)\right|^2 = |Y(w)|^2 - \alpha$

$$
\left|\hat{X}(w)\right|^2 = \begin{cases} |Y(w)|^2 - \alpha \left|\hat{D}(w)\right|^2 \text{ if } |Y(w)|^2 \ge (\alpha + \beta) \left|\hat{D}(w)\right|^2\\ \beta \left|\hat{D}(w)\right|^2 \text{ else} \end{cases}
$$
(4)

Iterative Thresholding-Based Spectral Subtraction Algorithm ... 223
Here, $\beta(0 < \beta \ll 1)$ avoids isolated peaks in spectrum to suppress musical noise. ative Thresholding-Based Spectral Subtraction Algorith
Here, $\beta(0 < \beta \ll 1)$ avoids isolated peaks in spe
e noisy phase, $\angle Y(w)$ is used in the final step bee
changed except at very low SNR [11] as shown Stated Spectral Subtraction Algorithm ...

1) avoids isolated peaks in spectrum to suppress musical noise.

(w) is used in the final step because phase information is almost

very low SNR [11] as shown in 5. The noisy phase, \angle Y (w) is used in the final step because phase information is almost
The noisy phase, \angle Y (w) is used in the final step because phase information is almost
unchanged except at very low SNR [11] as sh Iterative Thresholding-Based Spectral Subtraction Algorithm ... 223

Here, $\beta(0 < \beta \ll 1)$ avoids isolated peaks in spectrum to suppress musical noise.

The noisy phase, $\angle Y(w)$ is used in the final step because phase info

$$
\hat{X}(w) = \left| \hat{X}(w) \right| e^{\angle Y(w)} \tag{5}
$$

ative Thresholding-Based Spectral Subtraction Algorithm ... 223

Here, $\beta(0 < \beta \ll 1)$ avoids isolated peaks in spectrum to suppress musical noise.

e noisy phase, $\angle Y(w)$ is used in the final step because phase informatio Iterative Thresholding-Based Spectral Subtraction Algorithm ... 223

Here, $\beta(0 < \beta \ll 1)$ avoids isolated peaks in spectrum to suppress musical noise.

The noisy phase, $\angle Y(w)$ is used in the final step because phase info Here, $\beta(0 \le \beta \ll 1)$ avoids isolated peaks in spectrum to suppress musical noise.
The noisy phase, $\angle Y(w)$ is used in the final step because phase information is almost
unchanged except at very low SNR [11] as shown in 5 algorithm. is ends and $\hat{X}(w)$ is used in the final step because phase information is almost

changed except at very low SNR [11] as shown in 5.
 $\hat{X}(w) = \left| \hat{X}(w) \right| e^{\angle Y(w)}$ (5)

SS performance degrades at low SNR conditions [1

unchanged except at very low SNR [11] as shown in 5.
 $\hat{X}(w) = |\hat{X}(w)|e^{\angle Y(w)}$ (5)

SS performance degrades at low SNR conditions [12]. Several modified SS algo-

rithms have been proposed like multi-band SS [13], reduced $\hat{X}(w) = |\hat{X}(w)|e^{\angle Y(w)}$ (5)
SS performance degrades at low SNR conditions [12]. Several modified SS algo-
rithms have been proposed like multi-band SS [13], reduced delay convolution, adap-
tive averaging SS [14], and ge $\hat{X}(w) = |\hat{X}(w)|e^{-\hat{Y}(w)}$ (5)
SS performance degrades at low SNR conditions [12]. Several modified SS algo-
rithms have been proposed like multi-band SS [13], reduced delay convolution, adap-
tive averaging SS [14], and SS performance degrades at low SNR conditions [12]. Several modified SS algorithms have been proposed like multi-band SS [13], reduced delay convolution, adaptive averaging SS [14], and geometric SS [15] to deal with limi SS performance degrades at low SNR conditions [12]. Several modified SS alg
rithms have been proposed like multi-band SS [13], reduced delay convolution, ad
tive averaging SS [14], and geometric SS [15] to deal with limit ms have been proposed like multi-band SS [13], reduced delay convolution, adap-

a veraging SS [14], and geometric SS [15] to deal with limitations of the SS

orithm.

From Fig. 1, it is clear that the performance of the S tive averaging SS [14], and geometric SS [15] to deal with limitations of the SS
algorithm.
From Fig. 1, it is clear that the performance of the SS algorithm greatly depends
on noise estimation; hence, better the noise es algorithm.

From Fig. 1, it is clear that the performance of the SS algorithm greatly depends

on noise estimation; hence, better the noise estimation, better will be performance

[16, 17]. Other enhancement techniques als From Fig. 1, it is clear that the performance of the SS algorithm greatly depends
on noise estimation; hence, better the noise estimation, better will be performance
[16, 17]. Other enhancement techniques also require pri noise estimation; hence, better the noise estimation, better will be performance

i, 17]. Other enhancement techniques also require prior noise information, e.g.,

probability distribution of noise is assumed to be known [16, 17]. Other enhancement techniques also require prior noise information, e.g., the probability distribution of noise is assumed to be known in Wiener filter [18] and MMSE algorithm [19] or it assumes that noise and sp

the probability distribution of noise is assumed to be known in Wiener filter [18] and MMSE algorithm [19] or it assumes that noise and speech have independent spectral feature as in the case of subspace approach [20]. Ma exploits signal characteristic. Equation 6 represents a compressible signal $x \in R^N$ in MMSE algorithm [19] or it assumes that noise and speech have independent spectral
feature as in the case of subspace approach [20].
Martin and Cohen [21] has introduced the improved minima controlled recursive
averaging (feature as in the case of subspace approach [20].

Martin and Cohen [21] has introduced the improved minima control

averaging (IMCRA) algorithm, which performs better than all method

earlier. It estimates noise even in N . dominant frames and updates noise power
noothed periodogram for noise estimation.
use speech characterize to use as a clue to
veloped compressive sensing (CS) [22, 23]
epresents a compressible signal $x \in R^N$ in
le in 7,

$$
x = \sum_{i=1}^{N} X(i)\psi(i)
$$
 (6)

$$
x_T = \sum_{i=1}^T X_T(i)\psi_T(i) \tag{7}
$$

Example $x = \sum_{i=1}^{N} X(i) \psi(i)$ (6)
 $x_T = \sum_{i=1}^{T} X_T(i) \psi_T(i)$ (7)

The signal $x(n)$ will be sparse if reconstruction error (RE) as shown in 8 is exactly

nearly zero. $x = \sum_{i=1}^{N} X(i)$
 $x_T = \sum_{i=1}^{T} X_T(i)$

The signal $x(n)$ will be sparse if reconstruction

nearly zero. The signal $x(n)$ will be sparse if reconstruction error (RE) as shown in 8
or nearly zero.
R.E. = $\sum_{i=1}^{N} (x(i) - x_T(i))^2$
A CS-based signal recovery problem from noisy measurement y is showing is referred as l_0 minimiza

$$
x_T = \sum_{i=1} X_T(i)\psi_T(i)
$$
(7)
The signal *x*(*n*) will be sparse if reconstruction error (RE) as shown in 8 is exactly
nearly zero.
R.E. = $\sum_{i=1}^{N} (x(i) - x_T(i))^2$ (8)
A CS-based signal recovery problem from noisy measurement *y* is shown in 9
ich is referred as *l*₀ minimization problem.

$$
x^{opt} = \arg\min_{x} \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_0
$$
(9)

$$
x^{\text{opt}} = \arg\min_{x} \quad \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_0 \tag{9}
$$

224 R. Kumar et al.

Here, $||x||_0$ represents number of non-negative elements in x. Above problem is Here, $||x||_0$ represents number of non-negative elements in x. Above problem is basically a search problem to recover sparse vector x^{opt} which become exhaustive if R. Kumar et al.
represents number of non-negative elements in x. Above problem is
cch problem to recover sparse vector x^{opt} which become exhaustive if
is large. The alternate solution method is to solve 9 by l_1 minim R. Kumar et al.

Here, $||x||_0$ represents number of non-negative elements in x. Above problem is

basically a search problem to recover sparse vector x^{opt} which become exhaustive if

dimension of x is large. The alte 224

Here, $||x||_0$ represents number of non-negative elements in x. Above problem is

basically a search problem to recover sparse vector x^{opt} which become exhaustive if

dimension of x is large. The alternate solution 224

Here, $||x||_0$ represents number of non-negative elements in x. Abo

basically a search problem to recover sparse vector x^{opt} which become

dimension of x is large. The alternate solution method is to solve 9 by Here, $||x||_0$ represents number of non-negative elements in
basically a search problem to recover sparse vector x^{opt} which
dimension of x is large. The alternate solution method is to solve
as shown in 10.
 $x^{\text{opt}} = \$

$$
x^{\text{opt}} = \underset{x}{\text{arg min}} \quad \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1 \tag{10}
$$

$$
||x||_1 = \sum_i |x(i)| \tag{11}
$$

shown in 10.
 $x^{\text{opt}} = \arg \min_{x} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$ (10)

ere l_1 -norm is defined as:
 $\|x\|_1 = \sum_i |x(i)|$ (11)

It has been proved that if measurement is sufficient and A satisfy coherence prop-
 y , then l_1 mi $x^{\text{opt}} = \arg \min_{x} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$ (10)
where l_1 -norm is defined as:
 $\|x\|_1 = \sum_i |x(i)|$ (11)
It has been proved that if measurement is sufficient and A satisfy coherence prop-
erty, then l_1 minimization prob $x^{\text{opt}} = \arg \min_{x} \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1$ (10)
where l_1 -norm is defined as:
 $\|x\|_1 = \sum_i |x(i)|$ (11)
It has been proved that if measurement is sufficient and A satisfy coherence prop-
erty, then l_1 minimization prob where l_1 -norm is defined as:
 $||x||_1 = \sum_i |x(i)|$ (11)

It has been proved that if measurement is sufficient and A satisfy coherence prop-

erry, then l_1 minimization problem will give same solution as l_0 minimizatio where l_1 -norm is defined as:
 $||x||_1 = \sum_i |x(i)|$ (11)

It has been proved that if measurement is sufficient and A satisfy coherence prop-

erry, then l_1 minimization problem will give same solution as l_0 minimizatio For the set $\|x\|_1 = \sum_i |x(i)|$ (11)

It has been proved that if measurement is sufficient and A satisfy coherence prop-

erty, then l_1 minimization problem will give same solution as l_0 minimization problem

[24]. In $||x||_1 = \sum_i |x(i)|$ (11)
It has been proved that if measurement is sufficient and A satisfy coherence prop-
erty, then l_1 minimization problem will give same solution as l_0 minimization problem
[24]. In the time domain, It has been proved that if measurement is sufficient and A satisfy coherence property, then l_1 minimization problem will give same solution as l_0 minimization problem [24]. In the time domain, speech is not a sparse It has been proved that if measurement is sufficient and A satisfy
erty, then l_1 minimization problem will give same solution as l_0 minin
[24]. In the time domain, speech is not a sparse signal, but it shove
level i characteristics rather than noise characteristics; hence, performance does not change
whether the noise is stationary or non-stationary, which makes it useful for a real-
world scenario. In paper [26], authors have describ

whether the noise is stationary or non-stationary, which makes it useful for a real-
world scenario. In paper [26], authors have described all available methods to solve
the recovery problem defined in 9 and 10.
2 Itera world scenario. In paper [26], authors have described all available methods to solve
the recovery problem defined in 9 and 10.

2 **Iterative Soft Thresholding**

Iterative thresholding is a technique commonly used to recov **2 Iterative Soft Thresholding**
Iterative thresholding is a technique commonly used to recover the signal from
degraded or under-sampled signal [27, 28] based on the fact that the signal is sparse
in some sparsifying doma **Iterative Soft Thresholding**
rative thresholding is a technique commonly used to recover the signal from
graded or under-sampled signal [27, 28] based on the fact that the signal is sparse
come sparsifying domain. For so 2 **Iterative Soft Thresholding**
Iterative thresholding is a technique c
degraded or under-sampled signal $[27, 2]$
in some sparsifying domain. For solvin
an algorithm, called split augmented Lag
based on the iterative thr ing is a technique commonly used to recover the signal from
sampled signal [27, 28] based on the fact that the signal is sparse
g domain. For solving l_1 -regularized least square problem in 10,
d split augmented Lagrang

```
Repeat
g domain. For solving l_1-regularized least square probd split augmented Lagrangian shrinkage algorithm (SA<br>ive thresholding, has been utilized in the proposed algorithm for spectral denoising of time domain noisy s<br>Ini
d = 1/\mu A (y_{\rm fr} - A^T(v))X = d + v\mathbf{End} (12)
```
Iterative Thresholding-Based Spectral Subtraction Algorithm ... 225
where A and A^T represent Fourier and inverse Fourier transform, respectively, such where A and A^T represent Fourier a represent Fourier and inverse Fourier transform, respectively, such
identity matrix. The function soft(x , τ) in 12, attenuates input value
 $d \tau$ while values lower than threshold is made zero as shown in 13. Iterative Thresholding-Based Spectral Subtraction Algorithm ... 225
where A and A^T represent Fourier and inverse Fourier transform, respectively, such
that $AA^T = I$, I is identity matrix. The function soft(x, τ) in 1 Iterative Thresholding-Based Spectral Subtraction Algorithm ...

where A and A^T represent Fourier and inverse Fourier transform, respectively, such

that $AA^T = I$, I is identity matrix. The function soft(x, τ) in 12, att

Based Spectral Subtraction Algorithm ... 225
\nresent Fourier and inverse Fourier transform, respectively, such
\nitivity matrix. The function soft(*x*, τ) in 12, attenuates input value
\nwhile values lower than threshold is made zero as shown in 13.
\n
$$
soft(x, \tau) =\begin{cases}\nx - \tau & \text{if } \tau < x \\
0 & \text{if } -\tau < x < \tau \\
x + \tau & \text{if } x < -\tau\n\end{cases}
$$
\n(13)
\npresents the spectral feature of a frame after thresholding. If a

ere *A* and *A^T* represent Fourier and inverse Fourier transform, respectively, such $tAA^T = I$, *I* is identity matrix. The function soft (x, τ) in 12, attenuates input value bove threshold τ while values lower than t where A and A^T represent Fourier and inverse Fourier transform, respectively, such
that $AA^T = I$, I is identity matrix. The function soft (x, τ) in 12, attenuates input value
x above threshold τ while values lower tha that $AA^T = I$, *I* is identity matrix. The function soft(x , τ) in 12, attenuates input value x above threshold τ while values lower than threshold is made zero as shown in 13.
 $softmax(x, \tau) = \begin{cases} x - \tau & \text{if } \tau < x \\ 0 & \text{if$ x above threshold τ while values lower than threshold is made zero as shown in 13.

so $f(t(x, \tau)) =\begin{cases} x - \tau & \text{if } \tau < x \\ 0 & \text{if } \tau = x < \tau \end{cases}$ (13)

While X in 12 represents the spectral feature of a frame after thresholdin soft(x, τ) = $\begin{cases} x - \tau &\text{if } \tau < x \\ 0 &\text{if } -\tau < x < \tau \end{cases}$ (13)

While X in 12 represents the spectral feature of a frame after thresholding. If a

particular frame contains a speech, then after thresholding, larger magn $\text{soft}(x, \tau) = \begin{cases} x - \tau &\text{if } \tau < x \\ 0 &\text{if } -\tau < x \\ x + \tau &\text{if } x < -\tau \end{cases}$
While *X* in 12 represents the spectral feature of a frame particular frame contains a speech, then after threshold in will be obtained. Thus, if $-\tau$

a frame after thresholding. If a

olding, larger magnitude peaks

ne is a speech-dominant frame;

is the minimum power corre-

dominant, then noise power is
 $0 < a < 1$ (14)

oise for current frame and $\hat{D}_{\text{fr-1}}$ While *X* in 12 represents the spectral feature of a fram
particular frame contains a speech, then after thresholding
will be obtained. Thus, if $|X|^2 > P_{min}$, then that frame is a
otherwise, it is noise-dominant frame. Whe ectral feature of a frame after thresholding. If a
then after thresholding, larger magnitude peaks
in, then that frame is a speech-dominant frame;
me. Where P_{min} is the minimum power corre-
ame is a noise dominant, then particular frame contains a speech, then after thresholding, larger magnitude peaks
will be obtained. Thus, if $|X|^2 > P_{min}$, then that frame is a speech-dominant frame;
otherwise, it is noise-dominant frame. Where P_{min} i will be obtained. Thus, if $|X|^2 > P_{\text{min}}$, then that frame is a speech-dominant frame;
otherwise, it is noise-dominant frame. Where P_{min} is the minimum power corresponding to residual noise. If a frame is a noise dom

$$
\hat{D}_{\text{fr}} = a \hat{D}_{\text{fr}-1} + (1 - a)|A(y_{\text{fr}})|^2, 0 < a < 1 \tag{14}
$$

 $fr-1$ sponding to residual noise. If a frame is a noise dominant, then noise power is updated recursively using 14.
 $\hat{D}_{\text{fr}} = a \hat{D}_{\text{fr}-1} + (1 - a)|A(y_{\text{fr}})|^2$, $0 < a < 1$ (14)

where a is smoothing coefficient, \hat{D}_{fr} is where *a* is smoothing coefficient, \hat{D}_{fr} is e
is estimated noise previously. In the final
from noisy spectrum using 4.
The proposed algorithm is similar to
IMCRA; instead, it uses thresholding of s
3 Experiment is estimated noise previously. In the final step, estimated roise previously. In the final step, estimation is similar to the minima the IMCRA; instead, it uses thresholding of spectra based
 3 Experiment

A. *Experiment*

The proposed algorithm is similar to the minima tracking of periodogram as in

IMCRA; instead, it uses thresholding of spectra based on the sparsity of speech.
 3 Experiment

A. Experiment Setup

In the experiment, NOIZE IMCRA; instead, it uses thresholding of spectra based on the sparsity of speech.
 3 Experiment

A. Experiment Setup

In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken

by three male and thre **3 Experiment**

A. *Experiment Setup*

In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken

by three male and three female speakers. All speech samples are sampled at 8 kHz.

Noises used in the S Experiment

A. *Experiment Setup*

In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken

by three male and three female speakers. All speech samples are sampled at 8 kHz.

Noises used in the ex **3 Experiment**

A. *Experiment*, NOIZEUS [30] data has been used, having 30 sentences spoken

by three male and three female speakers. All speech samples are sampled at 8 kHz.

Noises used in the experiment are babble, A. *Experiment Setup*
In the experiment, NOIZEUS [30] data has been used, having 30 so
by three male and three female speakers. All speech samples are sa
Noises used in the experiment are babble, airport, exhibition, and c For evaluation purposes, frequency weighted segmental SNR, fwSNR [31] is used to assess the gain in quality. Proception purposes are sampled at 8 kHz.
Noises used in the experiment are babble, airport, exhibition, and car In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken
by three male and three female speakers. All speech samples are sampled at 8 kHz.
Noises used in the experiment are babble, airport, exhibition

In the experiment, NOIZEUS [30] data has been used, having 30 sentences spoken
by three male and three female speakers. All speech samples are sampled at 8 kHz.
Noises used in the experiment are babble, airport, exhibition by three male and three female speakers. All speech samples are sampled at 8 KHz.
Noises used in the experiment are babble, airport, exhibition, and car environment.
Noises have been added to clean speech with SNR from -1 Noises used in the experiment are babble, airport, exhibition, and car environment.
Noises have been added to clean speech with SNR from -10 to 10 dB. The Hamming
window has been used for windowing with 50% overlapping i Notes have been added to clean speech with SNK
window has been used for windowing with 50%
B. Performance Evaluation Measures
For evaluation purposes, frequency weighted seg
to assess the gain in quality. Perceptual evalua

226			R. Kumar et al.			
Table 1 Effect of smoothing coefficient on fwSNR performance of proposed algorithm in various noise environment						
Smoothing coefficient (a)						
Noise type	0.4	0.5	0.6	0.7	0.8	0.9
		4.8544	4.8473	4.8540	4.8344	4.7881
Exhibition	4.8385					
Babble	4.8125	4.8114	4.8078	4.8062	4.7973	4.8039
Airport	4.7888	4.7944	4.8023	4.8052	4.8019	4.8086

226
R. Kumar et al.
Table 1 Effect of smoothing coefficient on fwSNR performance of proposed algorithm in various

Exhibition 4.8385 4.8544 4.8473 4.8540 4.8344 4.7881

Babble 4.8125 4.8114 4.8078 4.8062 4.7973 4.8039

Airport 4.7888 4.7944 4.8023 4.8052 4.8019 4.8086

Car 4.8939 4.9099 4.9098 4.9075 4.8901 4.8602

C. Effect of Smooth Babble $\begin{array}{r} 4.8125 \\ 4.7973 \\ \hline \end{array}$ $\begin{array}{r} 4.8125 \\ 4.7888 \\ 4.7944 \\ 4.8023 \\ \hline \end{array}$ $\begin{array}{r} 4.8023 \\ 4.8052 \\ 4.8019 \\ 4.8086 \\ \hline \end{array}$ $\begin{array}{r} 4.8086 \\ 4.8039 \\ 4.9099 \\ 4.9098 \\ 4.9075 \\ 4.8901 \\ \hline \end{array}$ $\begin{array}{r} 4.801$ Airport 4.7888 4.7944 4.8023 4.8052 4.8019 4.8086

Car 4.8939 4.9099 4.9098 4.9075 4.8901 4.8602

C. Effect of Smoothing Coefficient and Frame Length

Table 1 shows the effect of variation of smoothing coefficient, a on f Fraction 1 4.8939 1 4.9099 1 4.9098 1 4.9075 1 4.8901 1 4.8602

Effect of Smoothing Coefficient and Frame Length

ble 1 shows the effect of variation of smoothing coefficient, a on fwSNR gain

der various noise condition

C. Effect of Smoothing Coefficient and Frame Length
Table 1 shows the effect of variation of smoothing coefficient, a on fwSNR gain
under various noise condition at 0 dB with frame length of 80 ms and $P_{\text{min}} = 5 \times 10 - 2$ C. *Effect of Smoothing Coefficient and Frame Length*
Table 1 shows the effect of variation of smoothing coefficient, *a* on fwSNR gain
under various noise condition at 0 dB with frame length of 80 ms and $P_{min} = 5 \times$
10 – $P_{\text{min}} = 5 \times 10^{-5}$. The bold numerals represent the highest value in the row. As it is clear, fwSNR of enhanced speech increases as frame size increases from 20 to *noothing Coefficient and Frame Length*

ne effect of variation of smoothing coefficient, *a* on fwSNR gain

ise condition at 0 dB with frame length of 80 ms and $P_{\text{min}} = 5 \times$

tts shown in Table 1 indicate that, in most Table 1 shows the effect of variation of smoothing coefficient, *a* on fwSNR gain under various noise condition at 0 dB with frame length of 80 ms and $P_{min} = 5 \times 10 - 2$. The results shown in Table 1 indicate that, in most Table 1 shows the effect of variation of smoothing coefficient, *a* on fwSNR gain under various noise condition at 0 dB with frame length of 80 ms and $P_{\text{min}} = 5 \times 10 - 2$. The results shown in Table 1 indicate that, in m under various noise condition at 0 dB with frame length of 80 ms and $P_{\text{min}} = 5 \times$
10 – 2. The results shown in Table 1 indicate that, in most of the cases, the proposed
algorithm performs good when $a\epsilon$ [0.5,0.8] for th 10 – 2. The results shown in Table 1 indicate that, in most of the cases, the proposed algorithm performs good when $a\epsilon[0.5,0.8]$ for the chosen database.

Results in Table 2 show the effect of varying frame size on the algorithm performs good when $a\epsilon$ [0.5,0.8] for the chosen database.

Results in Table 2 show the effect of varying frame size on the speech quality of

the enhanced speech using the proposed algorithm for various noises Results in Table 2 show the effect of
the enhanced speech using the proposed
SNR levels. The value of smoothing co
 $P_{\text{min}} = 5 \times 10^{-5}$. The bold numerals r
is clear, fwSNR of enhanced speech ir
80 ms in almost all cases. the enhanced speech using the proposed algorithm for various holses
SNR levels. The value of smoothing coefficient, a is 0.7 for whole e
 $P_{\text{min}} = 5 \times 10^{-5}$. The bold numerals represent the highest value in
is clear, fwS $P_{min} = 5 \times 10^{-9}$. The bold numerals represent the highest value in the row. As it
is clear, fwSNR of enhanced speech increases as frame size increases from 20 to
80 ms in almost all cases. When frame size increases beyon It is clear, IWSNK of enhanced speech increases as frame size increases from 20 to 80 ms in almost all cases. When frame size increases beyond 80 ms, there is a droptin intelligibility performance in terms of STOI hough q

80 ms in almost all cases. When frame size increases beyond 80 ms, there is a drop-
in intelligibility performance in terms of STOI though quality improves. It happens
because a larger frame contains both noise and voice because a larger frame contains both noise and vo
cause the removal of voice components from the s
in intelligibility.
D. *Comparison of Proposed Algorithm*
In this experiment, the proposed method with a fra
the previous Example 10. Comparison of Proposed Algorithm

this experiment, the proposed Algorithm

this experiment, the proposed method with a frame size of 80 ms (adopted from

previous experiment) is compared with the statistical a In intelligibility.

D. *Comparison of Proposed Algorithm*

In this experiment, the proposed method with a frame size of 80 ms (adopted from

the previous experiment) is compared with the statistical approach IMCRA [21]

D. *Comparison of Proposed Algorithm*
In this experiment, the proposed method with a frame size of 80 ms (adopted from
the previous experiment) is compared with the statistical approach IMCRA [21]
algorithms. All paramete In this experiment, the proposed method with a frame size of 80 ms (adopted from
the previous experiment) is compared with the statistical approach IMCRA [21]
algorithms. All parameters in the proposed algorithm have kept In this experiment, the proposed method with a frame size of 80 ms (adopted from
the previous experiment) is compared with the statistical approach IMCRA [21]
algorithms. All parameters in the proposed algorithm have kept orithms. All parameters in the proposed algorithm have kept constant except λ , ich represents weightage given to l_1 regularization. For higher noise, λ is kept h and vice versa.
Figures 2 and 3 show the performan which represents weightage given to l_1 regularization. For higher noise, λ is kept
high and vice versa.
Figures 2 and 3 show the performance comparison of the proposed algorithm with
the IMCRA algorithm in term of f high and vice versa.

Figures 2 and 3 show the performance comparison of the proposed algorithm with

the IMCRA algorithm in term of fwSNR and PESQ for quality gain. In Fig. 2, fwSNR

of enhanced speech using the proposed Figures 2 and 3 show the performance comparison of the proposed algorithm with
the IMCRA algorithm in term of fwSNR and PESQ for quality gain. In Fig. 2, fwSNR
of enhanced speech using the proposed algorithm is higher unde

227 Iterative Thresholding-Based Spectral Subtraction Algorithm Table 2 Effect of frame length on fwSNR performance of proposed algorithm in various noise					
environment					
Noise type	Input SNR (dB)	Frame length			
		20 ms	40 ms	80 ms	
Exhibition	-10	2.1037	2.4046	2.4913	
	-5	2.9003	3.2261	3.3196	
	$\mathbf{0}$	4.4816	4.6089	4.7172	
	5	6.7669	6.7235	6.6216	
	10	8.7186	8.9080	8.9671	
Babble	-10	2.1121	2.1258	2.1618	
	-5	2.9921	3.1548	3.2000	
	$\boldsymbol{0}$	4.3492	4.6991	4.8108	
	5	6.5673	6.7860	6.9251	
	10	8.7706	9.3968	9.5200	
Airport	-10	1.8858	1.9671	2.0662	
	-5	2.9102	3.0546	3.1396	
	$\boldsymbol{0}$	4.4212	4.6955	4.7928	
	5	6.3888	6.8418	6.9828	
	10	8.8742	9.4703	9.6426	
Car	-10	1.6770	1.9211	2.0912	
	-5	2.6459	2.9867	3.1784	
	$\mathbf{0}$	4.1308	4.6079	4.8078	
	5	6.5275	6.6981	6.8895	
	10	9.2413	9.4334	9.3804	

Iterative Thresholding-Based Spectral Subtraction Algorithm … 227
 Table 2 Effect of frame length on fwSNR performance of proposed algorithm in various noise The Thresholding - Based Spectral Subtraction Algorithm ... 227
 Table 2 Effect of frame length on fwSNR performance of proposed algorithm in various noise

Noise type Input SNR (dB) Frame length environment

 $\begin{array}{|l|l|l|}\n\hline\n0 & 4.1308 & 4.6079 & \textbf{4.8078} \\
\hline\n5 & 6.5275 & 6.6981 & \textbf{6.8895} \\
\hline\n10 & 9.2413 & \textbf{9.4334} & 9.3804\n\end{array}$
 4 Conclusion and Future Work

The proposed algorithm extracts non-speech or noise dominated f **S** 6.5275 6.6981 6.8895

10 9.2413 9.4334 9.3804
 4 Conclusion and Future Work

The proposed algorithm extracts non-speech or noise dominated frames effectively in

various non-stationary noises like babble, exhibition 10 9.2413

4 **Conclusion and Future Work**

The proposed algorithm extracts non-speech or nois

various non-stationary noises like babble, exhibitio

to the statistical approaches. The proposed algorith

on noise characteri **Conclusion and Future Work**

e proposed algorithm extracts non-speech or noise dominated frames effectively in

ious non-stationary noises like babble, exhibition, airport, and car noise compared

he statistical approach **4 Conclusion and Future Work**
The proposed algorithm extracts non-speech or noise dominated frames effectively in
various non-stationary noises like babble, exhibition, airport, and car noise compared
to the statistical **4 Conclusion and Future Work**
The proposed algorithm extracts non-speech or noise dominated frames effectively in
various non-stationary noises like babble, exhibition, airport, and car noise compared
to the statistica e proposed algorithm extracts non-speech or noise dominated frames effectively in
ious non-stationary noises like babble, exhibition, airport, and car noise compared
he statistical approaches. The proposed algorithm's per The proposed algorithm extracts non-speech or noise dominated frames effectively in various non-stationary noises like babble, exhibition, airport, and car noise compared to the statistical approaches. The proposed algori

various non-stationary noises like babble, exhibition, airport, and car noise compared
to the statistical approaches. The proposed algorithm's performance does not depend
on noise characteristics; hence, performance remai to the statistical approaches. The proposed algorithm's performance does not depend
on noise characteristics; hence, performance remains the same whether the noise is
stationary or non-stationary.
The proposed method uses on noise characteristics; hence, performar
stationary or non-stationary.
The proposed method uses a larger sr
noise update, i.e., higher weightage to cur
previous frame; hence, it adapt to a large v
In this paper, the Four

References

-
- **Example 1988**
 SNR
 Example 2008
 SNR
 Example 2008
 SNR
 Example 2008
 Example 2018
 Example 2018
 Example 4 Intelligibility improvement performance
 SECOMPT EXECOMPTE EXECOMPTE CONSTERNATION

SECONSTRIPY SECTION SECTION SECTION AND THE SUPERVIOLET ACOUST 27(2), 113-120 (1979). https://doi.org/10.1109/TASSP.1979.1163209

U **3.** 4 Intelligibility improvement performance
 References

1. S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.

Acoust. 27(2), 113–120 (1979). https://doi.org/10.1109/TASSP.197 4 Interngtointy improvement performance

S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.

Acoust. 27(2), 113–120 (1979), https://doi.org/10.1109/TASSP.1979.1163209

U. Purushotham
- 1445. https://doi.org/10.1109/mwscas.2017.8053204
- **References**

1. S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.

Acoust. 27(2), 113–120 (1979). https://doi.org/10.1109/TASSP.1979.1163209

2. U. Purushotham, K. Suresh, Impleme **S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.**
Acoust. **27**(2), 113–120 (1979). https://doi.org/10.1109/TASSP.1979.1163209
U. Purushotham, K. Suresh, Implementation of spectra S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.
Acoust. 27(2), 113–120 (1979). https://doi.org/10.1109/TASSP.1979.1163209
U. Purushotham, K. Suresh, Implementation of spectral sub org/10.1121/1.5094765 Acoust. 27(2), 113-120 (1979). https://doi.org/10.1109/TASSP.1979.1163209

2. U. Purushotham, K. Suresh, Implementation of spectral subtraction using sub-band filtering

in DSP C6748 processor for enhancing speech signal, U. Purushotham, K. Suresh, Implementation of spectral subtraction using sub-band filtering
in DSP C6748 processor for enhancing speech signal, in *Advances in Intelligent Systems and*
Computing (Springer, Singapore, 2018 Computing (Springer, Singapore, 2018), pp. 259–267

3. M. Bahoura, FPGA implementation of multi-band spectral subtraction method for speech

enhancement, in *Midwest Symposium on Circuits Systems*, vol. 2017-Augus (2017), M. Bahoura, FPGA implementation of multi-band spectral subtraction method for speech
enhancement, in *Midwest Symposium on Circuits Systems*, vol. 2017-Augus (2017), pp. 1442–1445. https://doi.org/10.1109/mws.cas.2017.b.30 enhancement, in *Midwest Symposium on Circuits Systems*, vol. 2017-Augus (2017), pp. 1442–1445. https://doi.org/10.1109/mwscas.2017.8053204
M. Keshavarzi, T. Goehring, R.E. Turner, B.C.J. Moore, Comparison of effects on su 1445. https://doi.org/10.1109/mwscas.2017.8053204

4. M. Keshavarzi, T. Goehring, R.E. Turner, B.C.J. Moore, Comparison of effects on subjective

intelligibility and quality of speech in babble for two algorithms: a deep M. Keshavarzi, T. Goehring, R.E. Turner, B.C.J. Moore, Comparison of effects on subjective
intelligibility and quality of speech in babble for two algorithms: a deep recurrent neural
network and spectral subtraction. J. Ac intelligibility and quality of speech in babble for two algorith
network and spectral subtraction. J. Acoust. Soc. Am. 145(3), 1-
org/10.1121/1.5094765
D. Cao, Z. Chen, X. Gao, Research on noise reduction algorithm t
filte
- 3745/JIPS.04.0123
-
-

- Iterative Thresholding-Based Spectral Subtraction Algorithm … 231 8. Q. Zhou, Research on English speech enhancement algorithm ... 231
8. Q. Zhou, Research on English speech enhancement algorithm based on improved spectral
subtraction and deep neural network. Int. J. Innov. Comput. Inf. ive Thresholding-Based Spectral Subtraction Algorithm ... 231

Q. Zhou, Research on English speech enhancement algorithm based on improved spectral

subtraction and deep neural network. Int. J. Innov. Comput. Inf. Control (2020). https://doi.org/10.24507/ijicic.16.05.1711
- erative Thresholding-Based Spectral Subtraction Algorithm ... 231

8. Q. Zhou, Research on English speech enhancement algorithm based on improved spectral

subtraction and deep neural network. Int. J. Innov. Comput. Inf. C ive Thresholding-Based Spectral Subtraction Algorithm ... (231)

Q. Zhou, Research on English speech enhancement algorithm based on improved spectral

subtraction and deep neural network. Int. J. Innov. Comput. Inf. Contro ement.2019.107117 10. 231

10. 24507/ijicic.16.05.1711

11. J. Innov. Comput. Inf. Control 16(5), 1711–1723

12. 2020). https://doi.org/10.24507/ijicic.16.05.1711

11. ive Thresholding-Based Spectral Subtraction Algorithm ... 231

Q. Zhou, Research on English speech enhancement algorithm based on improved spectral

subtraction and deep neural network. Int. J. Innov. Comput. Inf. Control tive Thresholding-Based Spectral Subtraction Algorithm ...

Q. Zhou, Research on English speech enhancement algorithm based on imp

subtraction and deep neural network. Int. J. Innov. Comput. Inf. Control 16(:

(2020). htt
-
- 11. 2. It is a seed been allottaction Algorithm ... 251

12. Chen, Research on English speech enhancement algorithm based on improved spectral

subtraction and deep neural network. Int. J. Innov. Comput. Inf. Control 16(5 Q. Zhou, Research on English speech enhancement algorithm based on improved spectral
subtraction and deep neural network. Int, J. Imnov. Comput. Inf. Control 16(5), 1711–1723
(2020). https://doi.org/10.24507/ijicic.16.05.1 Q. Zhou, Research on English speech enhancement algorithm based on improved spectral
calvarection and deep neural network. Int. J. Innov. Comput. Inf. Control 16(5), 1711–1723
H. Haneche, B. Boudraa, A. Ouahabi, A new way (2020). https://doi.org/10.24507/ijicic.16.05.1711

9. H. Haneche, B. Boudraa, A. Ouahabi, A new way to enhance speech signal based on compressed

sensing. Meas. J. Int. Meas. Confed. 151, 107117 (2020). https://doi.org/1
- H. Haneche, B. Boudraa, A. Ouahabi, A new way to enhance speech signal based on compressed
sensing. Meas. J. Int. Meas. Confed. **151**, 107117 (2020). https://doi.org/10.1016/j.measur
ment.2019.107117
M. Berouti, R. Schwart sensing. Meas. J. Int. Meas. Confed. **151**, 107117 (2020). https://doi.org/10.1016/j.measur
ement.2019.107117
M. Berouti, R. Schwartz, J. Makhoul, Enhancement of speech corrupted by acoustic noise,
in *IEEE International C* 10.1109/cesys.2017.8321280 10. M. Berouti, R. Schwartz, J. Makhoul, Enhancement of speech corrupted by acoustic noise,

in IEEE International Conference on Acoustics, Speech, and Signal Processing, 1 (1979),

19. 208–211. https://doi.org/10.1109/ica in IEEE International Conference on Acoustics, Speech, and Signal Processing, 1 (1979),
pp. 208–211. https://doi.org/10.1109/icassp.1979.1170788
Z. Chen, Y. Liu, G. Wang, S. Wang, W. Geng, Multiband spectral subtraction sp pp. 208–211. https://doi.org/10.1109/icassp.1979.1170788
Z. Chen, Y. Liu, G. Wang, S. Wang, W. Geng, Multiband spectral subtraction speech enhance-
ment algorithm with phase spectrum compensation, in *Proceedings of the 20* 11. \overline{Z} . Chen, Y. Liu, G. Wang, S. Wang, W. Geng, Multiband spectral subtraction speech enhancement algorithm with phase spectrum compensation, in *Proceedings of the 2019 IEEE 4th Advanced Information Technology,* ment algorithm with phase spectrum compensation, in *Proceedings of the 2019 IEEE 4th*
Advanced Information Technology, Electronic and Automation Control Conference IAEAC,
vol. 20 (2019), pp. 2681–2685. https://doi.org/10. vol. 20 (2019), pp. 2681–2685. https://doi.org/10.1109/iaeac47372.2019.8997837

12. T.K. Dash, S.S. Solanki, Comparative study of speech enhancement algorithms and their effect

on speech intelligibility, in Proceedings o T.K. Dash, S.S. Solanki, Comparative study of speech enhancement algorithms and ton speech intelligibility, in *Proceedings of the 2nd International Conference on Comm*
and *Electronics Systems ICCES*, 2017, vol. 2018-Janu
-
- doi.org/10.1109/89.966083
-
- on speech intelligibility, in *Proceedings of the 2nd International Conference on Communication*

and *Electronics Systems ICCES*, 2017, vol. 2018-Janua (2018), pp. 270–276. https://doi.org/

16. 1109/cessy.2017.8321280

3 and Electronics Systems ICCES, 2017, vol. 2018-Janua (2018), pp. 270–276. https://doi.org/
10.1109/cesys.2017.8321280

S. Kamath, P. Loizou, A multi-band spectral subtraction method for enhancing speech corrupted

S. Kamat 10.1109/cesys.2017.8321280

S. Kamath, P. Loizou, A multi-band spectral subtraction method for enhancing speech corrupted

by colored noise, in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal

Proces S. Kamath, P. Loizou, A multi-band spectral subtraction method for enhancing speech by colored noise, in *ICASSP*, *IEEE International Conference on Acoustics*, *Speech*, *a Processing*, vol. 4, no. 2 (2002), p. 4164. ht by colored noise, in *ICASSP, IEEE International Conference on Acoustics, Speech, and Signal*
 Processing, vol. 4, no. 2 (2002), p. 4164. https://doi.org/10.1109/icassp.2002.5745591

14. Hustafsson, S.E. Nordholm, I. Cla
- *Processing*, vol. 4, no. 2 (2002), p. 4164. https://doi.org/10.1109/icassp.2002.5745591
H. Gustafsson, S.E. Nordholm, I. Claesson, Spectral subtraction using reduced delay convolu-
ition and adaptive averaging. IEEE Trans H. Gustafsson, S.E. Nordholm, I. Claesson, Spectral subtraction using reduced delay convolu-
tion and adaptive averaging. IEEE Trans. Speech Audio Process. 9(8), 799–807 (2001). https://
doi.org/10.1109/89.966083
Y. Lu, P. 2019.9010477 doi.org/10.1109/89.966083

15. Y. Lu, P.C. Loizou, A geometric approach to spectral subtraction. Speech Commun. 50(6),

45.3–466 (2008). https://doi.org/10.1016/j.specom.2008.01.003

46. R. Dahlan, D. Krisnandi, A. Ramdan Y. Lu, P.C. Loizou, A geometric approach to spectral subtraction. Speech Commun. 50(6),
453–466 (2008). https://doi.org/10.1016/j.specom.2008.01.003
R. Dahlan, D. Krismandi, A. Ramdan, H.F. Pardede, Unbiased noise estimato 16. R. Dahlan, D. Krisnandi, A. Ramdan, H.F. Pardede, Unbiased noise estimator for Q-spectral
subtraction based speech enhancement, in *Proceedings of the International Conference on*
Radar, Antenna, Microwave, Electronics subtraction based speech enhancement, in *Proceedings of the International Conference on*
Radar, Antenna, Microwave, Electronics and Telecommunications ICRAMET, no. 2 (2019),
pp. 65-68. https://doi.org/10.1109/icramet47453 20. T. K. Ozawa, M. Morise, S. Sakamoto, K. Watanabe, Sound source separation by spectral subtraction based on instantaneous estimation of noise spectrum, in 6th International Conference on Systems Informatics, ICSAI, vol. **K.** Ozawa, M. Morise, S. Sakamoto, K. Watanabe, Sound source separation by spectral subtraction based on instantaneous estimation of noise spectrum, in *6th International Conference on* Systems *Informatics, ICSAI*, vol. tion based on instantaneous estimation of noise spectrum, in 6th International Conference on
Systems Informatics, ICSAI, vol. 1 (2019), pp. 1137–1142. https://doi.org/10.1109/icsai48974.

2019.9.010477

18. I. Almajai, B.
-
- (1984) Systems Informatics, ICSAI, vol. 1 (2019), pp. 1137–1142. https://doi.org/10.1109/icsai48974.

2019.9010477

I. Almajai, B. Milner, J. Darch, S. Vaseghi, Visually-derived Wiener filters for speech enhancement, in ICASSP, I 2019.9010477

22. I. Almajai, B. Milner, J. Darch, S. Vaseghi, Visually-derived Wiener filters for speech enhancement, in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4 (2007), p ment, in *ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing,*

19. Lephraim, D. Malah, Speech enhancement using a minimum-mean-square error short-time

spectral amplitude estimator. IEEE Tra vol. 4 (2007), pp. 2–5. https://doi.org/10.1109/icassp.2007.366980

Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean-square error short-time

spectral amplitude estimator. IEEE Trans. Audio, Speech Lang. Proce
-
-
- doi.org/10.1109/TIT.2006.871582
- 7424 spectral amplitude estimator. IEEE Trans. Audio, Speech Lang. Process. 32(6), 1109-1121

(1984)

20. Y. Ephraim, H.L. Van Trees, A signal subspace approach for speech enhancement. IEEE Trans.

Speech Audio Process. 3(4), 2 (1984)

Y. Ephraim, H.L. Van Trees, A signal subspace approach for speech enhancem

Speech Audio Process. 3(4), 251–266 (1995). https://doi.org/10.1109/89.397

R. Martin, I. Cohen, Single-channel speech presence probabili 20. Y. Ephraim, H.L. Van Trees, A signal subspace approach for speech enhancement. IEEE Trans.

Speech Audio Process. 3(4), 251–266 (1995). https://doi.org/10.1109/89.397090

21. R. Matrin, I. Cohen, Single-channel speech Speech Audio Process. 3(4), 251–266 (1995). https://doi.org/10.1109/89.397090
R. Martin, I. Cohen, Single-channel speech presence probability estimation and noise tracking,
in Audio Source Separation and Speech Enhancement R. Martin, I. Cohen, Single-channel speech presence probasion and Speech Enhancement (WD.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theorior doi.org/10.1109/TIT.2006.871582
R.G. Baraniuk, E. Candes, M. Elad, Y. Ma, Ap
-
-
- 232

26. M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts, 26. M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,
implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/
ACCESS.2018.273551
The Secondary of t R. Kumar et al.

M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

I ACCESS.2018.2793851
- 27. 22. I. Daubechies, M. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875-4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

27. I. Daubechies R. Kumar et al.

M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

I https://doi.org/10.1002/cpa.20042 28. A. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875-4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

27. I. Daubech R. Kumar et al.

M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

I K. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,
implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/
ACCESS.2018.2793851
I. Daubechies, M. Def implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/
ACCESS.2018.2793851
I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse
problems with a s
-
- 29. M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

27. Laubechies https://doi.org/10.1109/TIP.2010.2047910 26. M. Rani, S.B. Dhok, R.B. Deshmukh, A systematic review of compressive sensing: concepts,

implementations and applications. IEEE Access 6, 4875–4894 (2018). https://doi.org/10.1109/

ACCESS.2018.2793851

27. I. Daubech
-
- ACCESS.2018.2793851

27. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse

problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004).

https://doi.o I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004).
https://doi.org/10.1002/cpa.20042
A. Beck problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004).

Attps://doi.org/10.1002/cpa.20042

A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

proble
- 22. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

28. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse

29. M.V. Afonso, J.M. Bioucas-A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542
M.V. Afonso, J.M. Bioucas-Dias, M.A.T. Figue problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542
M.V. Afonso, J.M. Bioucas-Dias, M.A.T. Figueiredo, Fast image recovery using variable split-
ting and constrained optimization. IEEE Tr I/en ting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010).

https://doi.org/10.1109/TIP.2010.2047910

30. Y.H., P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithms https://doi.org/10.1109/TIP.2010.2047910

Y. Hu, P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithms.

Y. Hu, P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithm Y. Hu, P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithms.
Speech Commun. 49(7–8), 588–601 (2007). https://doi.org/10.1016/j.specom.2006.12.006
J.M. Tribolet, P. Noll, B.J. McDemnott, R.E. C
- 5495701