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Abstract
Many difficulties are encountered during evacuation from construction sites in hazardous 
situations, which may lead to severe fatalities. These fatalities, especially caused by fire, 
may be significantly reduced by ensuring personal protective equipment (PPE) compli-
ance of construction site workers and fire detection through proper surveillance. Thus, the 
detection of PPEs, fire and injured or trapped persons, can greatly assist in the reduction of 
fatalities and economic loss. This article presents a novel approach towards the detection 
of fire and PPEs to assist in the monitoring and evacuation tasks. This work utilizes the 
YOLOv4 and YOLOv4-tiny algorithms based on deep learning for carrying out the detec-
tion task. A self-made dataset has been utilized to train the model in the Darknet neural 
network framework. Moreover, a comparative analysis with previous works has been car-
ried out in order to endorse the real-time efficacy of the proposed work. The results verify  
the strength of YOLOv4 algorithm in real-time detection and surveillance at construction 
sites with maximum mean average precision (mAP) of 76.86 %.
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1 Introduction

With blossoming economic development, construction activities continue to be one of the 
most physically demanding industries. It is more labour intensive in developing countries, 
involving 2.5 – 10 times as many workers per activity, as compared to the developed ones 
[4]. Moreover, with a quite significant number of worker injuries and workplace accidents, 
the construction industry proves to be one of the most dangerous among all other indus-
tries. Therefore, the increasing scale and complexity of constructions have introduced great 
challenges in the reduction of construction site fatalities. To ensure worker safety, Occu-
pational Safety and Health Administration in the United States, Health and Safety Execu-
tive in the United Kingdom, and similar agencies in other countries have developed safety 
codes and regulations for construction [21]. Despite these measures, in 2016–17 alone, the 
total number of injuries (~19%) was the highest in construction compared to other indus-
tries in the United States, which is exorbitant [28].

The main causes of construction related casualties are falls, electrocution, stuck in the 
equipment, collision and fire. The majority of these injuries can be prevented if workers 
use appropriate personal protective equipments (PPEs). In view of the governing laws and 
safety regulations, suitable PPEs at the construction sites are being enforced. Despite this, 
workers usually disobey these regulations due to discomfort in wearing PPE, lack of safety 
awareness, and work interference [1, 9]. Consequently, to reduce casualties, the monitoring 
of appropriate usage of PPE and ensuring an effective fire detection system becomes essen-
tial. However, traditional PPE and fire detection techniques are quite inefficient for large 
spaces, large under-construction sites, or spaces with many disturbances. These traditional 
techniques not only require huge capital investment and maintenance costs, but also suffer 
from missed detection, false alarms, and detection delays. These drawbacks cause difficul-
ties in efficient monitoring of PPE and relaying accurate fire warnings [16]. Consequently, 
the development of an efficient PPE and fire detection approach has recently gained much 
interest among the scientific community.

2  Motivation

Although fire and PPE detection algorithms based on CNNs have shown remarkable 
performance in detection accuracy than traditional algorithms, some problems still 
exist. Most of the existing works focus on detecting either fire or PPE [27, 40]. This 
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cannot provide one place safety solution, which is extremely beneficial for monitoring 
and evacuation. The present work is not only limited to the detection of fire, but also it 
is capable of detecting PPEs (safety glasses, helmet, etc.) and to find the location of the 
fire extinguisher to assist in extinguishing or controlling small fires, often in emergency 
situations.

In general, the existing techniques for automatic monitoring of PPE and fire include two 
different tasks: PPE detection and fire detection. They can be further classified into two 
types: sensor based (traditional) and vision based (intelligent). The sensor based approach 
for PPE detection uses Radio Frequency Identification (RFID) tags. In this approach, 
RFID tags are installed on each PPE component. Also, the tags are either scanned (at the 
entrance) or continuously monitored via Local Area Network (LAN) or wireless system to 
verify if it meets the regulations [3, 12, 26, 37]. However, huge capital costs in the installa-
tion and maintenance of complex sensor networks might prevent its practical implementa-
tion. On the contrary, vision-based approaches analyze PPE components and fire events 
by recording the images or videos of the site. These approaches provide comparatively 
rich spatial information and help in understanding the complex construction sites more 
precisely, and comprehensively [33]. Moreover, these approaches require a low-cost and 
flexible system installation. Also, these approaches are highly capable of identifying PPE 
compliance and fire events in complex building structures [22]. These characteristics of 
vision-based approaches encourage for the automatic PPE and fire detection.

There are three main stages in the process of image PPE and fire detection algorithms: 
(1) image pre-processing, (2) feature extraction, and (3) PPE and fire detection. Among 
them, feature extraction is the heart of algorithms. In pre convolutional neural networks 
(CNNs) era, these methods depend upon the manual selection of PPE and fire features, and 
machine learning based classification (like hard cap detection using edge detection [20] 
and Histogram of Oriented Gradient (HOG) [18], and safety vest detection using Support 
Vector Machine (SVM) [34] and k-Nearest Neighbor (kNN) [30]). These methods provide 
fast detection, but their accuracy depends upon professional knowledge. However, even 
with expert knowledge, only simple features (like edges, colours, and simple texture) can 
be discovered. Consequently, these algorithms are inappropriate for fire and PPE detection 
at construction sites. The construction sites often have complex PPE and fire scenes as well 
as many inferential events in practical applications. This makes it quite difficult to distin-
guish between PPEs, fire and look-like events, thereby causing low accuracy and weaker 
generalization ability.

Further, with the advent of CNNs, these algorithms gained much popularity owing to 
their unparalleled ability to automatically learn and extract complex image features. More-
over, they provide superior performance on object detection and tracking, surveillance, 
self-driving vehicles, medical diagnosis, etc. [15]. Precisely, deep learning (DL) algorithms 
have proved to be a revolutionary step in the field of computer vision [10]. DL techniques 
have been successfully employed for waste segregation [14] and nuclear waste object detec-
tion [36]. Attributable to the ground-breaking achievements in complex object detection 
tasks [6, 8, 11, 31], previous literature employed CNNs into the field of PPE and image fire 
detection including detection of safety guardrails [13], objects on roof construction sites 
[35], workers potentially unsafe behaviour [7], common construction-related objects [27], 
and fire [17, 19, 23, 25, 40]. These methods generally employ two-stage (CNN, R-CNN, 
and Faster R-CNN) or one-stage (SSD, YOLOv2, and YOLOv3) detection approach. In 
addition, efficient CNNs have been proposed for the detection of fire in surveillance tasks 
[24]. Despite all these developments, the methods of real-time PPE and fire detection are 
inadequate, although significantly important for safety [38].
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Under the umbrella of the above discussion, this work aims towards the real-time detec-
tion of fire, PPE and persons at construction sites for effective monitoring and assisting in 
evacuation tasks. Concisely, the main contributions of this work can be sketched as follows:

• Proposing a novel deep learning based approach for the development of real-time fire 
detection system.

• Detecting a person with or without PPE including helmet: This may help in reducing 
casualties at construction sites.

• Finding the location of fire extinguisher to assist in extinguishing or controlling small 
fires in case of emergencies.

In the present work, the PPE is assumed to consist of helmet, safety vest, safety glasses, 
and fire extinguisher. Moreover, the literature reveals the supremacy of the YOLOv4 algo-
rithm in handling complex object detection tasks with acceptable accuracy in real-time [5]. 
In view of this, the present work utilizes the YOLOv4 algorithm for the detection of PPE 
and fire. Moreover, to test the competence of YOLOv4 algorithm in the present applica-
tion, its performance has also been compared with YOLOv4-tiny algorithm (a variant of 
YOLOv4).

The remainder of this paper is organized as follows. Section 3 describes the dataset uti-
lized in the present investigation. This section also discusses the image acquisition method 
and augmentation techniques. A brief sketch of the YOLOv4 and YOLOv4-tiny algorithms 
is presented in Sect. 4. Then, details of the system specifications and parametric settings 
used to train the model have been presented in Sect. 5. In Sect. 6, the experimental results 
are presented and discussed. To end with, Sect. 7 gives the concluding remarks of the pre-
sent work.

3  Dataset

The following subsections depict the strategy to gather and set up the image dataset, split 
the dataset into training and testing subsets, and lastly perform data augmentation to pro-
duce a bigger dataset from a moderately small number of images.

3.1  Data preparation

It is well known that the DL approach is data-driven and therefore, significant number of 
images with specific visual contents need to be acquired for training. For this purpose, 
open images dataset V6 by Google has been utilized to acquire approximately 10,000 
images and their annotations. In this work, the image search has been carried out using 
the following keywords: helmet, bicycle_helmet, safety_vest, safety_glasses, fire, person 
and fire_extinguisher. In order to obtain a more accurate model, around 5,000 images have 
been acquired in JPEG format using the camera of Apple iPhone XR (64GB) with 1280 × 
960 pixel resolution. After the pre-processing and cleaning of the collected data, 14,500 
(97%) images have been utilized to form a self-made real-time dataset wherein each image 
is labeled with the name of the class to which it belongs. In the present investigation, these 
cleaned sample images have been grouped into six classes, namely: Fire, Person_With_
Helmet, Person, Safety Vest, Fire Extinguisher and Safety Glass. Table 1 demonstrates the 
sample images of each class.
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3.2  Data splitting and augmentation

The prepared labeled dataset has been split into three parts namely training, validation, 
and testing. For this purpose, from the total images, 11,600 (80%) images are randomly 
selected as training images, 1,450 (10%) images are randomly chosen for validation, and 
the rest are utilized for testing purposes. After splitting, the training images are augmented 
to prevent overfitting by providing randomly distorted images. In this work, during each 
training epoch, training images are distorted by random scaling and horizontal flipping. 
Some of the augmentation techniques used for making the dataset are as follows: Flipping, 
Rotation, Shearing, Cropping, Zoom in, Zoom out, and Changing brightness or Contrast as 
depicted in Fig. 1. This provides the model an ability to recognize objects irrespective of 
the viewing angle and distance with respect to the camera.

4  Object detection using CNN

Any object detection problem in computer vision can be defined as identifying an object 
(a.k.a., classification) in an image, and then precisely estimating its location (a.k.a., locali-
zation) within the image. CNN performs this by subdividing the entire process into region 

Table 1  Illustrative images of different classes

(a) Class 1: Fire (b)Class 2: Person_With_Helmet (c) Class 3: Person

(d) Class 4: Safety Vest (e)Class 5: Fire Extinguisher (f) Class 6: Safety Glass

(a) Original image (b) Scaling and 
cropping

(c) Horizontal flip (d) Changing 
brightness / 
Contrast

Fig. 1  Illustration of Image augmentation
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proposal, feature extraction, and classification. It takes an image or video sequence as an 
input and provides region proposals by convolution, stride, pooling, etc. It then predicts the 
presence or absence of PPE with fire in these regions using convolutional layers, residu-
als, fully-connected layers, etc. The convolutional layer is the heart of CNNs. It uses a set 
of image transform filters (known as kernels) to generate feature maps of original images 
which is responsible for accurate object detection. However, it has been found that kernels 
in earlier layers mainly learn spatial relationships by extracting simple features (like col-
our, edges, etc.). These spatial relationships cannot distinguish PPE, fire, and disturbances 
in noisy environments. Therefore, it becomes essential to use deep CNNs for extracting 
the semantic relationship for PPE and fire detection in real-time. Further, these networks 
require a substantial amount of time for accurate detection. Hence, there is always a trade-
off between speed and accuracy.

Recently, You Only Look Once (YOLO) emerges as a highly noticeable and useful state-
of-the-art DL technique which offers the advantage of real-time and synchronized object 
detection and classification [32]. Previous DL based object detection techniques (R-CNN 
and it’s family) offer poor computational speed and high intricacy involved in optimization 
due to their pipeline architecture. These limitations of classical object detection techniques 
are addressed by YOLO by transforming the object detection task into a regression model. 
In contrast to its competitors, YOLO performs training on complete images resulting in 
optimized detection performance.

4.1  YOLOv4

The introduction of mosaic data enhancement in data processing and optimization of back-
bone, network training, activation, and loss function, has made YOLOv4 the best in the 
business. Moreover, YOLOv4 achieves the prominent balance between speed and accuracy 
for real-time object detection [5], as shown in Fig. 2.

YOLOv4 employs CSPDarknet53, an open source neural network module, as the fun-
damental backbone network to prepare and extract image features. After that, PANet (Path 
Aggregation Network) was utilized to achieve better extracted feature fusion and then, the 
head exploited YOLOv3 for object detection.

The structure of the PPE and fire detection model at construction sites based on YOLO 
v4 has been illustrated in Fig. 3. The composition and functions of the key modules are as 
follows:

• The CBL (Convolution, Batch Normalization and Leaky-ReLU) module was composed 
of a convolution layer, a batch normalization layer and a Leaky-ReLU activation func-
tion. It was similar to YOLOv3 network and the most repeatedly seen structure in the 
YOLOv4 network.

• The CBM (Convolution, Batch Normalization and MISH) module along with CBL was 
used for feature extraction. The only difference between these two was that in CBM, 
instead of Leaky-ReLU, MISH activation function was employed.

• The SPP (Spatial Pyramid Pooling) layer transforms convolution features of diverse 
magnitudes into pooled features of the same length.

• The CSP (Center and Scale Prediction) module was used to enhance the learning ability 
of CNNs by separating low-level features into two parts and then blending cross-level 
features.
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4.1.1  Deep transfer learning

YOLOv4, like other CNNs, can also be trained from scratch. However, in order to 
achieve optimal results, this approach requires substantial training data along with 
hyper-parameter tuning, which takes significant processing time. In order to overcome 
these difficulties, transfer learning has been implemented. It achieves significantly bet-
ter and reliable performance for image PPE with fire detection at construction sites. In 
this process, a DL model has been pre-trained on a different, but large related dataset 
(a.k.a., source dataset). After that, the model has been re-trained on the comparatively 
smaller desired dataset (a.k.a., target dataset). Through this process, the model adapts 
itself to learn high- and mid-level features (edges, colours, shapes, etc.) from the source 
dataset that are relevant and useful for the classes in the target dataset. In this work, a 
pre-trained YOLOv4 model on COCO dataset has been utilized.

Fig. 2  Comparison of the speed and accuracy of different object detectors. (Some articles stated the FPS of 
their detectors for only one of the GPUs: Maxwell/Pascal/Volta) [5]



 Multimedia Tools and Applications

1 3

4.1.2  Performance parameters

In the present investigation, some of the fundamental key values [29] were inspected 
over the entire phase of training for exploring the performance of YOLOv4 in the rec-
ognition of face masked individuals. A brief discussion of these fundamental key values 
is as under:

(i) Precision: Precision is expressed in terms of the ratio of number of objects detected 
correctly to the number of total objects detected. Mathematically, Precision can be 
computed using Eq. (1):

 (ii) Recall: Recall is evaluated in terms of percentage of the number of objects which 
are correctly detected to the number of ground truth objects. Recall can be evaluated 
using Eq. (2):

Here, NTP = Number of True Positives, i.e., number of objects detected correctly
NFP = Number of False Positives, i.e., number of detected objects which could not corre-

spond to the ground truth objects
NFN = Number of False Negatives, i.e., number of ground truth objects that could not be 

detected

 (iii) Intersection over Union (IoU): One of the recognized evaluation metrics in object 
detection tasks is IoU which is mathematically represented by Eq. (3). The con-
cept of IoU has been illustrated in Fig. 4.

(1)Precision =
NTP

NTP + NFP

(2)Recall =
NTP

NTP + NFN

Fig. 3  PPE and fire detection based on YOLOv4 [5]
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In Eq. (3) and Fig.  4, A and B represent the bounding boxes of prediction and 
ground truth respectively.

 (iv) Average Precision (AP): In general, a precision-recall curve (corresponding to a 
definite threshold value of IoU), can be drawn once the values of precision and 
recall are identified. Average Precision (AP) is the area under the precision-recall 
curve which is expressed by Eq. (4):

 (iv) Mean Average Precision (mAP): The mean of average precisions of all classes 
(say for N number of classes) specified in the test model is termed as mAP and is 
mathematically represented by Eq. (5):

 (vi) Loss function: A necessary criterion for performance analysis of YOLOv4 on the 
test model is the evaluation of the value of Loss function. Typically, the sum-
mation of bounding box location loss (LCIoU) , confidence loss (LConfidence) , and 
classification loss (LClass) have been used as the loss function [39] for training 
the YOLOv4 PPE and fire detection model. The loss function is mathematically 
expressed by Eq. (6) as:

Here,  LCIoU is the error associated with bounding box location and being expressed by 
Eq. (7).

where,

(3)IoU =
A ∩ B

A ∪ B

(4)AP = ∫
1

0

p(r)dr

(5)mAP =

∑N

i=1
APi

N

(6)Loss = LCIoU + LConfidence + LClass

(7)L
CIoU

= 1 − IoU +d
2

∕
c2
+ ��

(a) (b)

Fig. 4  The concept of IoU (a) Graphical representation (b) Example (Red colored bounding box represent 
ground truth and black is for predicted bounding box)
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In Eq. (7), d and c respectively represent the diagonal distance of predicted and ground 
truth bounding boxes, and the distance between the two bounding box centers. The respec-
tive width and height of ground truth bounding box represented by hgt and wgt while that of 
predicted bounding box are represented by h and w.

In Eq. (6), LConfidence signifies the confidence error been represented by Eq. (9).

where,

Here, 1obj
ij

=

{

1, if the object falls into the jthbounding box in grid i

0, otherwise
 

Also, LClass refers to the classification error which is usually expressed by Eq. (11). The 
LClass corresponding to the ith grid is the summation of classification errors associated with 
all the objects within that grid where pc is true class probability.

 (vii) F1 Score: F1 Score is another most frequently used parameter for evaluating the 
performance of YOLOv4 algorithm. It is computed using Eq. (12).

The YOLOv4 algorithm disseminates the input image into a grid of cells of dimen-
sions S × S wherein 3 bounding boxes can be predicted by each grid cell. Also, the  
bounding boxes are predicted by YOLOv4 at three distinct scales. Moreover, k-means  
clustering is utilized for the determination of bounding box priors. The present investi-
gation uses 9 clusters and 3 scales. The selected clusters are consistently distributed  
among scales as (17 × 33), (39 × 85), (105 × 101), (59 × 193), (121 × 265), (265 × 125),

(206 × 329), (359 × 230), (370 × 378).

� =
�

(1 − IoU) + �

(8)� =
4

�2
(arctan

wgt

hgt
− arctan

w

h
)
2

(9)LConfidence =

S2
∑

i=0

B
∑

j=0

1
obj

ij
{−log(p) + BCE(n̂, n)}

(10)BCE
(

n̂, n
)

= −n̂ log(n) − (1 − n̂) log(1 − n)

S2 = number of grids in the input image

B = number of bounding boxes generated by each grind

p = probability that the object is PPE and fire

(11)LClass =

S2
∑

i=0

B
∑

j=0

1
noobj

ij
{−log(1 − pc)}

(12)F1score =
2 × Precision × Recall

Precision + Recall
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4.2  YOLOv4‑tiny

Although YOLOv4 performs exceptionally well in object detection task, but owing to its 
large structure size (137 layers), it is computationally expensive and not fast enough to 
run on embedded devices. However, YOLOv4-tiny has only 29 layers (combination of 
convolutional and pooling layers) in the backbone network. Consequently, it has compara-
tively small model size (<25 MB) with very high detection speed (~ 500 times faster) and 
reduced accuracy.

5  Simulation platform and parametric settings for training

The details of the simulation platform used in the present analysis have been presented in 
Table 2 along with their associated specific configurations. Notably, the simulation setting 
assembles the complete script in Visual Studio 2017.

Out of 14,500 images of the cleaned dataset, the training was performed on 80% 
of the images (11,600 images), the rest 20% (2,900 images) meant for testing and 
validation. The initial weight assignment at the starting phase of training was carried 
out using the pre-trained weights for the convolutional layers YOLOv4.conv.137 for 
YOLOv4 and yolov4-tiny.conv.29 for YOLOv4-tiny. In this work, a comparison of the 
performance of YOLOv4 and YOLOv4-tiny algorithms with previous works has been 
made. To accomplish this objective, the parameters specified in Table 3 were used for 
training.

For both algorithms (YOLOv4 and YOLOv4-tiny), the total number of iterations was 
set to 20,000. Initially, the learning rate was fixed at 0.001. However, after 16000 and 
18000 iterations, the learning rate was divided by 10. The completion of training took 
approximately 80 hours (12 hours for YOLOv4-tiny and 68 hours for YOLOv4) on the 
specified simulation platform (Table 2). The entire training and testing was accomplished 
at the Computer Vision Research Laboratory in the Department of Instrumentation and 
Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Pun-
jab, India.

6  Results and discussion

As mentioned earlier, the training through YOLOv4 and YOLOv4-tiny algorithms have 
been carried out for 20,000 iterations in the system settings described in Table 2. The 
performance parameters (mAP, Average IoU, Precision, Recall and F1 score) have been 

Table 2  Description of 
Simulation platform

Name Related configuration

Operating System Windows
CPU Intel(R) Core (TM) i7-9700F 

CPU @ 3.00 GHz
RAM 8 GB
GPU MSI Gaming GeForce GTX 1650
GPU acceleration library CUDA10.0, CUDNN7.4
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regularly monitored and evaluated during the training on an interval basis (at regular 
intervals of 1000 iterations). These performance parameters for YOLOv4 and YOLOv4-
tiny algorithms have been presented in Table 4.

It is quite evident from Table 4 that the mAP settles at the best value of 76.86% for 
YOLOv4 algorithm after the completion of 20000 iterations. Conversely, the YOLOv4-
tiny algorithm struggles at 54.19% of mAP even after 20000 iterations. Moreover, the 
variations in average loss and mAP values corresponding to the number of iterations 
in the training phase have been illustrated in Fig. 5a, b for YOLOv4 and YOLOv4-tiny 
algorithms respectively. The training results reveal that after 20000 iterations, YOLOv4 
and YOLOv4-tiny algorithms yield an average loss of 2.6171 and 0.5240 respectively. 
Also, it can be observed that the mAP value obtained by YOLOv4 is 41.83% higher 
than that of YOLOv4-tiny (with respect to the best value). For comparative insight of 
YOLOv4 and YOLOv4-tiny (in terms of % mAP), the variations in mAP values with the 
number of iterations has been presented in Fig. 6.

In addition, Table 5 presents a summary of the present work in terms of mAP and 
detection speed (frames per second, i.e., FPS). The data presented in Table 5 reveals the 
effectiveness of YOLOv4 over the YOLOv4-tiny algorithm.

After the training has been accomplished, the validation of the test images on the 
trained model has been performed. Fig.  7 presents the experimental results of the 
test images for YOLOv4 and YOLOv4-tiny algorithms. Moreover, for quantitative 

Table 3  Parameters of CFG used for training our model

Filters usually depend on the number of classes, bounding box properties, Prediction probability and the 
number of masks, i.e., filters = {number of bounding box properties (4) + Prediction probability Pc (1) + 
Total number of classes (6)}× Number of mask, where mask denotes the indices of anchors (3)
*Represent the parameters modified in the original YOLOv4 CFG and YOLOv4-tiny CFG respectively

Parameter Value(s)

YOLOv4 Neural Network YOLOv4-tiny Neural Network

Width 416 416
Height 416 416
Batch 64 64
Subdivisions* 64 32
Channels 3 -
Momentum 0.9 0.9
Decay 0.0005 0.0005
Learning rate 0.001 0.001
Maximum number of 

Batches*
20000 20000

Policy Steps Steps
Steps* 16000, 18000 16000,18000
Scale 0.1, 0.1 0.1, 0.1
Classes* 6 6
Filters* (4 + 1 + 6) × 3 = 33 (4 + 1 + 6) × 3 = 33
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Table 4  Training results of YOLOv4 and YOLOv4-tiny algorithms on the test model

*BEST represents the iteration for which maximum mAP has been observed during training

Iterations YOLO version mAP
(%)

Average IoU
(%)

Precision Recall F1 score

1000 v4 16.72 24.45 0.34 0.30 0.32
v4-tiny 7.04 22.35 0.33 0.07 0.12

2000 v4 46.18 45.16 0.59 0.50 0.54
v4-tiny 20.23 36.77 0.51 0.19 0.27

3000 v4 43.63 45.45 0.60 0.48 0.53
v4-tiny 35.52 36.58 0.50 0.27 0.35

4000 v4 50.71 48.02 0.62 0.57 0.59
v4-tiny 37.99 37.19 0.50 0.32 0.39

5000 v4 54.96 58.17 0.73 0.54 0.62
v4-tiny 40.19 39.09 0.53 0.33 0.41

6000 v4 47.72 55.48 0.70 0.69 0.64
v4-tiny 42.24 37.06 0.50 0.35 0.41

7000 v4 58.19 58.14 0.71 0.60 0.65
v4-tiny 44.38 39.15 0.53 0.34 0.41

8000 v4 54.82 55.67 0.71 0.64 0.67
v4-tiny 45.41 39.43 0.53 0.36 0.43

9000 v4 44.11 43.92 0.55 0.66 0.60
v4-tiny 47.29 40.74 0.55 0.37 0.44

10000 v4 47.72 54.70 0.68 0.66 0.67
v4-tiny 47.41 39.38 0.53 0.40 0.46

11000 v4 60.46 60.18 0.75 0.69 0.72
v4-tiny 49.12 41.86 0.56 0.38 0.45

12000 v4 61.75 54.78 0.68 0.72 0.70
v4-tiny 49.54 40.44 0.54 0.41 0.47

13000 v4 58.34 49.97 0.64 0.74 0.69
v4-tiny 51.09 42.41 0.57 0.44 0.49

14000 v4 71.85 55.36 0.70 0.73 0.72
v4-tiny 50.33 41.63 0.56 0.42 0.48

15000 v4 67.91 67 0.83 0.71 0.76
v4-tiny 51.68 43.95 0.59 0.43 0.50

16000 v4 68.83 65.39 0.80 0.76 0.78
v4-tiny 51.19 42.36 0.57 0.46 0.51

17000 v4 78.18 68.56 0.83 0.77 0.80
v4-tiny 53.62 44.22 0.58 0.49 0.53

18000 v4 63.40 64.43 0.80 0.75 0.77
v4-tiny 54.28 43.57 0.57 0.50 0.53

19000 v4 64.91 63.65 0.78 0.77 0.77
v4-tiny 54.46 46.44 0.61 0.49 0.55

20000 v4 76.86 70.59 0.85 0.77 0.81
v4-tiny 54.19 43.60 0.58 0.51 0.54

BEST* v4 76.86 70.59 0.85 0.77 0.81
v4-tiny 54.19 43.60 0.58 0.51 0.54
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Fig. 5  Variations of loss function and mAP w.r.t. number of iterations for (a) YOLOv4 (b) YOLOv4-tiny
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assessment of the simulation results, a comparison has been made among YOLOv4 and 
YOLOv4-tiny algorithms in terms of prediction probability and prediction time.

As evident from Fig. 7 and Table 6, all the test images (except test image 6) were correctly 
recognized by YOLOv4 with satisfactory prediction probability. In contrast, YOLOv4-tiny 
exhibits poor performance as it is incapable of recognizing some of the test images correctly. In 
addition, the test results presented in Table 6 confirm the poor computational speed of YOLOv4 
over YOLOv4-tiny. It can be observed that the computational speed of YOLOv4-tiny is note-
worthy. However, poor prediction probability and poor detection capability are observed (in 
case of YOLOv4-tiny). To compare the detection capabilities of YOLOv4 and YOLOv4-tiny, 
the total number of objects that were detected in the test images has been tabulated in Table 7.

For comparative analysis, the missed and false detection rates along with mAP values 
for YOLOv4 and YOLOv4-tiny algorithms have been presented in a tabular form (in 
Table 8). It can be observed that the detection rates in case of YOLOv4 are compara-
tively lower than YOLOv4-tiny.

Further, the obtained results for detection of PPE with fire have been compared with pre-
vious works (either PPE or fire) [2, 9, 16, 28] to validate the performance of the proposed 

Fig. 6  Variation in mAP w.r.t. number of iterations for YOLOv4 and YOLOv4-tiny algorithms

Table 5  Comparison of YOLOv4 and YOLOv4-tiny algorithms in terms of mAP and detection speed

Algorithm mAP
(%)

Detection Speed (FPS)

CPU (Intel(R) Core (TM) i5-4200U CPU @ 
1.60GHz 2.30GHz)

On Specified 
Platform (Table 
2)

YOLOv4 76.86 1 19.8
YOLOv4-tiny 54.19 5.3 109
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Fig. 7  Experimental results on sample test images for PPE and fire detection tasks (a) Original image (b) 
Detection by YOLOv4 (c) Detection by YOLOv4-tiny
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methodology. This comparison has been summarized in Table 9. Reported literature reveals 
that although [9, 16] and [2] achieve high precision, but they can only detect either (i) per-
sons with helmet, or (ii) person, or (iii) fire. Moreover, most of the training and testing images 
were randomly fetched from consecutive video frames. This does not yield fruitful results with 
practical implications. In contrast, the present work utilizes images that have been taken from 
a variety of sources, devices, at different locations, perspectives, and times. Therefore, the per-
formance of the proposed methodology reflects the most probable performance, especially on 
unseen images. Table 9 also reveals that previous works are unable to provide real-time speed. 
However, the present work ensures 19.8 FPS and 109 FPS with YOLOv4 and YOLOv4-tiny 
respectively. Moreover, to distinguish between fire and look-a-like events, the previous works 
require video frames. In contrast, the present work is applicable to both still images and video 
frames. Therefore, it has greater generalization capability and adaptability for practical usage.

Table 6  Quantitative comparison of the Experimental results of the test model

Test Image Name Prediction probability (in %) Prediction Time (in ms)

YOLOv4 YOLOv4-tiny YOLOv4 YOLOv4-tiny

1 Fire 98 64 145.75 10.56
2 Fire 99 80 145.87 10.76
3 Fire 99 26 150.77 11.12

Fire 98 38
Person_With_Helmet 100 67
Person_With_Helmet 100 No detection
Safety vest 89 56
Safety vest 87 64

4 Person_With_Helmet 99 54 149.56 11.10
Person_With_Helmet 98 No detection
Safety vest 87 54

5 Person_With_Helmet 100 68 148.75 11.05
Safety vest 98 57

6 Person 100 No detection 148.59 11.03
Safety vest No detection 24

7 Person_With_Helmet 100 68 147.97 11.01
Safety vest 98 29

8 Person_With_Helmet 87 No detection 148.04 11.04
Safety vest 92 24

9 Fire 100 84 149.89 11.13
False detection
False detection

10 Person 100 No detection 149.68 11.12
Person 100 No detection
Safety Vest 84 26

11 Fire 95 20 147.87 10.99
21

12 Person_With_Helmet 100 58 147.93 11.01
False detection
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7  Conclusions

This work presents a maiden attempt towards the detection of PPE and fire at construc-
tion sites for overall assessment of occupational safety. For the real-time detection of 
PPE and fire, YOLOv4 and YOLOv4-tiny algorithms have been employed. The experi-
mental results prove the efficiency of YOLOv4 algorithm over YOLOv4-tiny algorithm 
in terms of prediction probability. It is observed that YOLOv4 offers mAP of 76.86%. 
This value is 41.83% higher than the best mAP obtained by YOLOv4-tiny. Clearly, the 

Table 7  Comparison of detection 
capability

Test Image Ground Truth Objects Detected

YOLOv4 YOLOv4-tiny

1 1 1 1
2 1 1 2
3 6 6 5
4 3 3 2
5 2 2 2
6 2 1 1
7 2 2 2
8 2 2 1
9 1 1 3
10 3 3 1
11 1 1 2
12 1 1 2

Table 8  Comparison of detection 
rates and mAP for YOLOv4 and 
YOLOv4-tiny algorithms

Algorithm Missed Detection 
Rate (%)

False Detection 
Rate (%)

mAP (%)

YOLOv4 0 0.68 76.86
YOLOv4-tiny 8.47 19.75 54.19

Table 9  Performance of different PPE and fire detection models

PWH Person_With_Helmet and ‘x’ represents unavailability of data

S. N. Authors Methodology Class FPS

PWH Person Fire Safety 
Vest

Fire 
Hydrant

Safety 
Glasses

 1. Nath et al. [28] YOLOv3 73.97% x x 72.3% x x 11
 2. Fang et al. [9] Faster R-CNN >90% x x x x x 10
 3. Balakreshnan 

et al. [2]
Azure Custom 

Vision AI
x >90% x x x 50% x

 4. Li and Zhao [16] YOLOv3 x x >90% x x x 28
 5. Proposed* YOLOv4 84.93% 81.15% 67.72% 98.41% 52.52% 76.45% 19.9
 6. Proposed* YOLOv4-tiny 46.28% 32.71% 44.66% 83.83% 100.00% 22.20% 109
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results recommend the development of smart surveillance systems based on YOLOv4 
algorithm for PPE and fire direction to reduce construction site casualties. However, the 
present application needs to be trained on a large dataset to get more generalized and 
robust model. This may be addressed in future works.
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