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Abstract—The optimal scheduling of distributed energy re-
sources within the distribution network improves the system’s
performance. Nevertheless, the inherent uncertainty associated
with distributed energy resource output (especially renewable
energy-based) and load demand poses a challenge when making
optimal decisions. This paper proposes an information gap
decision theory-based day-ahead scheduling scheme to maximize
the robustness against multiple uncertainties having a lack of
information. The uncertainties considered in this paper are pho-
tovoltaic generation and load demand. This framework quantifies
how well a scheduling strategy performs in the presence of
uncertainties by quantifying with a robustness function. Due
to these multiple uncertainties, the proposed framework is
formulated as a multi-objective optimization problem in the form
of a mixed integer second-order cone program, which ensures a
global solution. This scheme is implemented in GAMS software
and solved using the GUROBI solver. To verify the effectiveness
of the proposed framework, it is tested on a modified IEEE 33-bus
distribution system. The results show that the proposed scheme
is robust against multiple uncertainties and easy to implement
with less computational time.

Index Terms—Day-ahead scheduling, distributed energy
sources, information gap decision theory, multiple uncertainties,
robust scheduling.

NOMENCLATURE

Indices
k Index for uncertainty parameter.
t Index for time interval.
x, y Index for bus.
xy Index for branch.
Sets
Ω/ΩLD/ΩMG Collection of network, load, and main grid buses.
ΩB/ΩCB Collection of buses coupled withBESS/CB.
ΩPV Collection of buses with coupled with PV.
Υ Uncertainty parameters set.
T Time intervals set.
Parameters
λch
x /λdis

x Efficiency of xth BESS during charging/discharging.
CB/CCB Operational cost of xth BESS/CB.
CMG
t /kMG

q Active power purchase price of the main grid and its
reactive counterpart.

γk,t Predicted value of kth uncertainty parameter in tth

time interval.

This work is partially sponsored by the DST, India, through the research
grants: ID-EDGe Project (DST-1390-EED), UI-ASSIST Project (IUS-1132-
EED), D-SIDES Project (DST-1237-EED), and partially financed by SERB,
India through research grant: Parameter and Topology Estimation of Distri-
bution Network (SER-1667-EED).

Ixy Upper limit for current flowing in xyth line.

PLD
x,t /Q

LD
x,t/S

LD
x,t Forecasted active/reactive/apparent power of xth load

at tth time interval.
PPV
x,t Forecasted generation of xth PV at tth time interval.

Pxy/Qxy Upper limit for Active/Reactive power flowing in xyth

line.
SB
x Upper limit for BESS apparent power at xth bus.

Vx/Vx Upper/lower bound for voltage at xth bus.

NCB
x /Y CB

x Maximum number of acceptable switchings in a
day/Maximum banks of xth CB.

EB
x /EB

x Lower/upper energy level limits for xth BESS.

PMG
x /PMG

x Lower/upper limits of active power for the main grid.

QMG
x /QMG

x Lower/upper limits of reactive power for the main grid.

QCB
x,step Step size of xth CB.

Variables
μch
x,t/μ

dis
x,t Binary variables associated with xth BESS for charg-

ing/discharging.
P ch
x,t/P

dis
x,t Active power charge/discharge at xth BESS.

QB
x,t/E

B
x,t Reactive power/energy level at xth BESS.

μCB,UP
x,t /μCB,DN

x,t Binary variables associated with up/down regulation

status of xth CB.
τCB
x,t Step status of xth CB.

QCB
x,t Reactive power of xth CB.

PMG
x,t /QMG

x,t Real/reactive powers of main grid(sub-station).

Vx,t/θx,t xth bus voltage magnitude and angle.
Pxy,t/Qxy,t Active/reactive power flowing in xyth line at tth time

interval.
Ux,t/WR

xy,t/W
I
xy,t Variables related to conic reformulation.

γk,t kth uncertainty parameter in tth time interval.

δk Uncertainty horizon of kth uncertainty parameter.

I. INTRODUCTION

The incorporation of distributed energy resources (DERs),

such as distributed generation, battery energy storage systems

(BESSs), and capacitor banks (CBs), into existing distribu-

tion networks is transforming them into active distribution

networks (ADNs). This evolution holds tremendous promise,

with the integration of these DERs delivering many benefits

to utility companies [1], [2] like peak load shaving, which

reduces the stress on the system, reducing the curtailment

of renewable energy sources by efficiently storing excess

energy in BESS. Additionally, integrating DERs contributes to

reducing energy losses, improving voltage profiles to maintain

a stable supply, and opportunities for energy arbitrage by

leveraging fluctuations in electricity prices [1], [2]. However,

this significant shift towards an ADN architecture introduces a978-1-6654-7164-0/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

ne
rg

y 
Te

ch
no

lo
gi

es
 fo

r F
ut

ur
e 

G
rid

s (
ET

FG
) |

 9
78

-1
-6

65
4-

71
64

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
ET

FG
55

87
3.

20
23

.1
04

07
31

9

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE. Downloaded on April 24,2024 at 18:51:29 UTC from IEEE Xplore.  Restrictions apply. 



new layer of intricacy and operational challenges. As a result,

the quest for the optimal operation of ADNs in the presence of

these active elements has garnered substantial attention from

researchers.

The optimal sizing and operation of BESSs in the microgrid

are presented in [3] to reduce the cost of operation. The

optimal operation of BESS, along with renewable energy

resources(RESs), is presented in [4]. The main objective of

this work is to minimize the electricity cost by optimally

dispatching BESSs and RESs. But to reduce the carbon emis-

sions, the available generation from RESs should fed to the

grid. The effectiveness of various convex power flow models

of unbalanced distribution networks (DNs) integrated with

BESSs are highlighted in [5]. The combined optimal schedul-

ing and real-time dispatch of multiple BESSs in the real

network is proposed in [6]. The optimal dispatch minimizes

the operational cost, and real-time dispatch revises the dispatch

of BESSs subjected to voltage violations by measuring the

system state. In this work, the scheduling problem does not

account for the uncertainty. Similarly, the combined day-ahead

and real-time operation of BESSs in ADN is proposed in [7].

In this work, the uncertainty of photovoltaics (PVs) and load

is modeled using probability-distributed functions (PDFs). The

stochastic scheduling of BESS and CB in a day-ahead manner

is discussed in [8]. This work models the optimization problem

as a mixed integer second-order cone program (MISOCP),

and uncertainty is modeled with PDFs. The stochastic model

predicted control-based optimal operation of DERs is proposed

in the work [9].

The generation from the RES is not accurate and majorly

depends on the weather conditions. Similarly, load demand

depends on weather conditions and residents’ behavior at the

distribution level [10]. So, an effective tool for addressing

this uncertainty is required for decision-making purposes.

Several methods are available in the literature to address the

uncertainty from load demand and RESs, such as PDF, fuzzy

membership function, uncertainty interval, etc. [11]. The his-

torical data should be available for all these methods to model

the uncertainty parameters. Information Gap Decision Theory

(IGDT) is a decision-making framework used when there is

uncertainty or ambiguity about key variables [12], especially

when there is a lack of information about uncertainty. In

IGDT, decision-makers aim to make robust choices against a

wide range of possible scenarios or outcomes. It acknowledges

that in complex, real-world scenarios, complete information

may be lacking, and there can be gaps in one’s knowledge.

This IGDT framework has already been adopted in various

power system research studies [13]–[16]. In [13], IGDT is

used to model the uncertainty of natural disasters to improve

DN resiliency. The optimal operation of the grid, considering

the dynamic thermal rating of the transmission line, which

depends on forest wildfires, is modeled using IGDT [14]. The

security constraint unit commitment for optimal operation of

the grid using IGDT is proposed in [15]. An optimal operation

of DN using IGDT is proposed in [16], but the formulations

are non-convex, which does not guarantee a global solution.

Based on the aforementioned discussion, this paper proposes

a convex framework for the optimal operation of DERs for

day-to-day operations, considering the multiple uncertainties.

This framework is based on the context of an advanced

distribution management system. The deterministic frame-

work aims to determine the dispatch of DERs at the day-

ahead stage to minimize the operational cost, including power

purchasing and operational and maintenance costs of DERs.

The IGDT-based scheduling scheme aims to maximize the

robustness function. This proposed framework is modeled as

a MISOCP, which provides the global optimum solution. The

uncertainty is addressed using the IGDT framework. In which

uncertainty parameters are modeled using the envelop bound

model. The DERs considered in this network are PVs, BESSs,

and CBs. Since there are two uncertainty parameters, such

as PV generation and load demand, present in the system,

the proposed problem becomes multi-objective. This multi-

objective problem is solved by generating a Pareto-optimal

front and selecting the best solution with fuzzy satisfying

method..

II. PROPOSED DAY-AHEAD SCHEDULING SCHEME

The schematic diagram of the proposed scheduling scheme

is shown in Fig. 1. This scheme is used to make the day-

ahead dispatch decisions of DERs present in ADN against

multiple uncertainties. The operator receives network topology

data, forecasts, and grid prices through communication for the

proposed scheduling. The proposed IGDT-based scheduling

scheme involves three stages. Stage 1 involves determining the

base case solution, i.e., the optimum operational cost. Stage 2

involves generating the Pareto optimal front for the robustness

functions against multiple uncertainties (PV generation and

load demand in this work) by running IGDT-based day-ahead

scheduling (DAS) several times. Using the fuzzy satisfying

method, the best solution out of the Pareto optimal front will

be selected in Stage 3. The optimal decisions will be shared

with BESS and CB, and the power purchase schedule will

be communicated to the operator. These stages are further

discussed in subsequent sections.

A. Deterministic Day-Ahead Scheduling

This section presents the mathematical formulations for the

deterministic day-ahead scheduling (DDAS) [8]. In the DDAS

framework, all forecasts are assumed to be accurate.

1) Objective Function:

minF =
∑

x∈ΩMG

∑
t∈T

[CMG
t Δt

(
PMG
x,t + kMG

q QMG
x,t

)]
+

∑
x∈ΩB

∑
t∈T

[
ΔtCB

(
P dis
x,t + P ch

x,t

)]
+

∑
x∈ΩCB

∑
t∈T

[
CCB

(
μCB,UP
x,t + μCB,DN

x,t

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The objective of DDAS, denoted as F , is to reduce the day-

ahead operational expenses of the ADN. Within this function,
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Risk - Averse IGDT-Based
Optimal Scheduling Framework

Decisions:

- BESS Schedule
- SCB Schedule

- Power Purchase       

  Schedule
- Robustness Bands   

  (Load & PV)
- Power Flows

Technical constraints

Grid Price

Network

Topology data

Stage 1

Base Case
Solution:

Deterministic
DAS

Pareto
Optimal
Front:

IGDT-Based
DAS

Best
Solution:

Fuzzy
Satisfying
Method

Stage 3Stage 2

Forecasts

(Load & PV)

Fig. 1. The IGDT-based optimal scheduling schematic diagram.

the initial component of F quantifies the expenditure linked to

procuring energy from the main grid through the sub-station.

Concurrently, the operational and maintenance costs related to

the BESS and CB are encompassed by the second and third

components of F
2) Constraints:

μch
x,t + μdis

x,t ≤ 1, ∀t, ∀x ∈ ΩB (2)

0 ≤ P ch
x,t ≤ μch

x,tS
B
x

0 ≤ P dis
x,t ≤ μdis

x,tS
B
x

}
∀t, ∀x ∈ ΩB (3)

(P ch
x,t)

2 + (QB
x,t)

2 ≤ (SB
x )

2

(P dis
x,t )

2 + (QB
x,t)

2 ≤ (SB
x )

2

}
∀t, ∀x ∈ ΩB (4)

EB
x,t+1 = EB

x,t +Δt λch
x P ch

x,t −Δt λdis
x P dis

x,t

EB
x ≤ EB

x,t ≤ EB
x

}
∀t, ∀x ∈ ΩB (5)

μCB,UP
x,t + μCB,DN

x,t ≤ 1, ∀t, ∀x ∈ ΩCB (6)∑
t∈T

(
μCB,UP
x,t + μCB,DN

x,t

)
≤ NCB

x , ∀x ∈ ΩCB (7)

τCB
x,t − τCB

x,t−1 ≤ μCB,UP
x,t Y CB

x − μCB,DN
x,t

τCB
x,t − τCB

x,t−1 ≥ μCB,UP
x,t − μCB,DN

x,t Y CB
x

}
∀t, ∀x ∈ ΩCB (8)

QCB
x,t = τCB

x,t ·QCB
x,step, ∀t, ∀x ∈ ΩCB (9)

Ux,t = V 2
x,t/

√
2, ∀t, ∀x ∈ Ω (10)

WR
xy,t = Vx,tVy,t cos(θx,t − θy,t)

W I
xy,t = Vx,tVy,t sin(θx,t − θy,t), ∀t, ∀xy

(11)

2Ux,tUy,t ≥ (WR
xy,t)

2 + (W I
xy,t)

2, ∀t, ∀xy (12)

Pxy,t =
√
2GxyUx,t −GxyW

R
xy,t −BxyW

I
xy,t

Qxy,t = −
√
2BxyUx,t +BxyW

R
xy,t −GxyW

I
xy,t

}
∀t, ∀xy

(13)

Ux,t = 1/
√
2, ∀t, ∀x ∈ ΩMG

Vx
2/
√
2 ≤ Ux,t ≤ Vx

2
/
√
2, ∀t, ∀x ∈ ΩLD

(14)

− VxVy ≤ W I
xy,t ≤ VxVy

0 ≤ WR
xy,t ≤ VxVy

}
∀t, ∀xy (15)

− Pxy ≤ Pxy,t ≤ Pxy

−Qxy ≤ Qxy,t ≤ Qxy

}
∀t, ∀xy (16)

PMG
x,t +

(
P dis
x,t − P ch

x,t

)
+ PPV

x,t − PLD
x,t =

∑
y∈Ω(x)

Pxy,t

QMG
x,t +QB

x,t +QCB
x,t −QLD

x,t =
∑

y∈Ω(x)

Qxy,t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀t, ∀x

(17)

I2xy,t =
√
2(G2

xy +B2
xy)(Ux,t + Uy,t − 2WR

xy,t)

≤ Ixy
2
, ∀t, ∀xy

(18)

Equation (2) governs the charging or discharging of the

BESSs within the time interval t. The constraints on the

active power of BESSs are outlined in equation (3). Equation

(4) illustrates the convex quadratic constraints pertaining to

active and reactive power injections from BESSs. At each

time interval t, equation (5) defines the energy state of BESSs,

encompassing their energy constraints. Equation (6) governs

the control of CBs to adjust reactive power compensation

during the same time interval t. To ensure that the cumulative

switching actions of CBs in a day remain within acceptable

limits, equation (7) is enforced, while equation (8) restricts the

regulation span of CBs after considering switching variables

and the total number of banks. The variables and expressions

relevant to the second-order cone programming (SOCP) based

power flow model are introduced in equations (10) and (11),

with expression (12) embodying the conic constraint. The

linear representations of active and reactive power flows for

line xy at time interval t are expressed in (13). Equations

(14) to (16) define the boundaries for power flow variables.

Equation (17) denotes the nodal power balance within the

distribution network, and the square of the line current limit

(Ixy,t) can be expressed linearly as shown in equation (18).

Collectively, equations (1) through (9) and (12) through (18)

constitute the comprehensive formulation of the MISOCP-

based DDAS scheme.

B. IGDT-Based Day-Ahead Scheduling

The IGDT is a framework for making decisions in situations

where there is uncertainty about the parameters and outcomes

of a decision problem [12]. It centers around "info-gaps,"

representing the level of uncertainty about specific parameters.

Rather than estimating outcome probabilities precisely, IGDT

aims to identify decision options that perform well across

diverse scenarios. Robustness and opportunistic functions are

mathematical tools used to evaluate different strategies un-

der uncertainty. Robustness assesses a decision’s reliability

across various scenarios, while opportunistic functions gauge

the potential for exceptional outcomes. These functions help

decision-makers align their choices with their objectives and

risk tolerance.

In this work, we focus on the IGDT framework to maximize

its robustness. It is also known as a risk-averse decision-

making scheme. Several methods can model the uncertainty

variable in the IGDT framework, but the envelope-bound
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model is used in this work due to its simplicity and popularity

[11]. The uncertainty parameter γk,t, can be formulated as

in Eqs. (19) and (20). The expression (20) is nonlinear due to

absolute function, which makes the optimization problem non-

convex. So, reformulated linearized expressions are given in

(21) and (22) [17]. The degree of robustness for the decision

vector χ is determined by identifying the maximum range of

the uncertainty horizon where all critical system requirements

continue to be fulfilled. This can be formulated as in Eqs.

(23) and (24). Where R̃z is the kth uncertainty parameter’s

robustness band. Ψmin is the minimum system requirement.

γk,t ∈ Γk,t(δk, γk,t), ∀t, ∀k ∈ Υ (19)

Γk,t(δk, γk,t) =

∣∣∣∣γk,t − γk,t
γk,t

∣∣∣∣ ≤ δk (20)

(
γk,t − γk,t

γk,t

)
≤ δk (21)

−
(
γk,t − γk,t

γk,t

)
≤ δk (22)

R̃z = max
δk

{δk} , ∀k ∈ Υ (23)

min {Ψ(χ, γ1, γ2, ..., γn)} ≥ Ψmin (24)

F̃ in the below expression shows the forecasted cost ob-

tained from the DDAS scheme by assuming load demand and

PV generation forecasts are accurate.

F̃ = min
χ̃

F(PPV, SLD) (25)

St: (2)-(9), (12)-(18)

The expression in (26) shows the minimum system re-

quirement, FMC. In which ξ is the permissible increase in

the operational cost. The ξ can be selected based on the

requirement and experience of the operator.

F(PPV, SLD) ≤ FMC (26)

FMC = (1 + ξ)F̃ (27)

In this work, we considered two uncertainty parameters,

i.e., PV generation and load demand. The objective function,

OF , is to maximize the robustness against all two uncertain

variables. The maximum risk (increase in operational cost)

occurs when PV generation reduces (30) and load demand

increases (31). Here, it is trying to set the decision variable χ
to prepare for the worst condition, which may cause more risk,

and make sure that the minimum requirement (26) is always

met. Eq. (32) represents the power balance at every node with

actual values (PPV
x,t , P

LD
x,t , Q

LD
x,t ).

max
χ̃

OF (28)

OF = min(δPV or δLD) (29)

PPV
x,t = PPV

x,t (1− δPV), ∀x ∈ ΩPV, ∀t ∈ T (30)

SLD
x,t = SLD

x,t (1 + δLD), ∀x ∈ ΩLD, ∀t ∈ T (31)

Sub Station

23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

26 27 28 29 30 31 32 33

PV1CB1 CB3

BESS4

BESS1

PV3

PV4

PV5 PV2

CB4

PV6

CB5

CB6

BESS2

BESS3

CB2

CB7

CB8

Fig. 2. Standard IEEE 33-bus distribution network integrated with DERs.

PMG
x,t +

(
P dis
x,t − P ch

x,t

)
+ PPV

x,t − PLD
x,t =

∑
y∈Ω(x)

Pxy,t

QMG
x,t +QB

x,t +QCB
x,t −QLD

x,t =
∑

y∈Ω(x)

Qxy,t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀t, ∀x

(32)

The proposed formulation becomes multi-objective opti-

mization since the OF has two objectives. To find the best so-

lution, form a Pareto optimal front [18], and a fuzzy satisfying

method is used to find the best solution from the Pareto optimal

front [18]. The procedure to solve multi-objective optimization

for this problem (two objectives) is explained in Algorithm 1.

It is to be noted that this technique can be applied to solving

multi-objective functions having more than two objectives.

Algorithm 1: : Procedure to Solve Multi-Objective
Optimization Problem

1. Initially, solve the DDAS scheme (25) and find out the

base case solution F̃ .

2. For a value of ξ, take one objective among δPV and δLD
and solve the IGDT-base DAS to determine their

maximum value.

3. Add one of the objective functions as a constraint in the

optimization problem. In this work, δLD ≤ ε.
4. By varying ε, from δmax

LD to δmin
LD , run proposed

framework for maximizing δPV.

5. δPV vs δLD gives the Pareto optimal front.

6. Determine the linear membership function value, φgj (Zi),
from the multiple solutions of the Pareto optimal front.

7. Find the best solution by calculating the solution with

minimum dissatisfaction of all objective functions from

(34).

φgj (Zi) =

⎧⎪⎪⎨
⎪⎪⎩
1, gj(Zi) > gmax

j
gmin
j −gj(Zi)

gmin
j −gmax

j
, gmin

j ≤ gj(Zi) ≤ gmax
j

0, gj(Zi) < gmin
j

(33)

max
i=1:Λp

min
j=1:Λo

(φgj (Zi)) (34)

III. CASE STUDY

A. Specifications of Test System
The proposed scheduling scheme is programmed in GAMS

software on a personal computer with an i7, 3.2 GHz, and 16
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TABLE I
DETAILS OF DIFFERENT ELEMENTS IN 33-BUS SYSTEM

Type Location Details of each element

PV
8, 18, 20, 25,
30, 33.

Rating = 0.6 MW.

CB
6, 10, 14, 17,
21, 24, 27, 31.

QCB
x,step = 0.05 MVAr, ΨCB

x = 5,

NCB
x = 5, CCB

x = 0.5$.

BESS
5, 15, 26, 32.

SB
x = 0.2 MVA, EB

x = 0.45 MWh,
EB
x = 0.05 MWh,

λch
x = (1/λdis

x ) = 0.9, CB
x = 5$/MW.

Other
-

kMG
q = 0.05, Pxy =5 pu, Ixy = 5 pu,

Vx = 0.9 pu, Vx = 1.1pu.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

δ
P

V
 

ξ

Fig. 3. Variation of robustness versus the variation of ξ against PV generation
uncertainty.

GB of RAM and solved with a GUROBI solver. A modified

IEEE 33-bus system used to validate proposed scheduling is

shown in Fig. 2. The necessary data is obtained from [8]. The

details of different elements connected to IEEE 33-bus are

presented in Table I. The minimum and maximum limits of

upper grid active/reactive power are 0 and 6 pu, respectively.

The normalized forecast data corresponding to PV generation,

load demand, and main grid price is obtained from [8]. In

this work, the price received from the grid is assumed to be

accurate.

B. Results and Discussion

In this work, four different strategies are discussed to

validate the proposed framework. The details regarding these

four strategies are given below:

Strategy 1: In this strategy, forecasts of PV generation and

load demand are assumed to be accurate.

Strategy 2: Only PV generation forecast uncertainty is consid-

ered, and the load demand forecast is assumed to be accurate.

Strategy 3: Only load demand forecast uncertainty is consid-

ered, and the PV generation forecast is assumed to be accurate.

Strategy 4: PV generation and load demand forecast uncer-

tainty are considered in this strategy.

The optimal objective function of Strategy 1, which is the

base case value, is obtained as $5951.32 by running the DDAS

framework. This base case value in stage 1 is supplied to stage

2.

Strategy 2 optimizes the robustness function against PV

generation forecasting uncertainty. The optimal robustness

value δPV versus varying ξ value is plotted in Fig. 3. We can

observe the linear relationship between δPV and ξ from ξ 0 to

0.365. After ξ is above 0.365, the robustness is always unity.

These results show that if the operator chooses to increase

0

0.04

0.08

0.12

0.16

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

δ
L

D
 

ξ

Fig. 4. Variation of robustness versus the variation of ξ against load demand
uncertainty.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

δ
P

V
 

δLD 

Fig. 5. Pareto optimal front of robustness against PV generation and load
demand uncertainty.

ADN’s operational costs by 36.5%, the distribution network

is robust against PV generation uncertainty.

Strategy 3 optimizes the robustness function against load

demand forecasting uncertainty. The optimal robustness value

δLD versus varying ξ value is plotted in Fig. 4. Like Strategy

2, δLD is linearly varying with ξ until its value is 0.25. After

ξ is above 0.3, the robustness always equals 0.1781. These

results show that, even if the operator is ready to increase

ADN’s operational cost, the robustness against load demand

is not increasing. This is due to security limits such as voltage

and line current carrying.

Strategy 4 is a multi-objective optimization problem since

the objective is to optimize the robustness functions of PV gen-

eration and load demand simultaneously. First, we generated

the Pareto optimal front and selected the best solution using

the fuzzy satisfying method according to Algorithm 1. For ξ
is equal to 0.2, the optimum values of δLD and δLD are 0.2748

and 0.07 respectively. The total computational time required to

generate the optimal front is 623.52 sec. So, it is feasible for

the operator to run the proposed multi-objective IGDT-based

optimal scheduling framework for any value of ξ since the

decisions are taken at the day-ahead stage. The operational cost

will increase if the operator wants higher robustness against

uncertainty.

The minimum voltage in the modified IEEE 33-bus ADN at

every time interval for all four strategies is plotted in Fig. 6.

The voltage profile is best in Strategy 1, but it is not advisable

to implement it in practical scenarios since uncertainty is not

addressed in this strategy. The total active power injection from

all four BESSs into ADN at every time interval is plotted in

Fig. 7. Similarly, the sum of reactive power from all eight CBs

and four BESSs are plotted in Fig. 8 (a) and 8 (b), respectively.
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Fig. 6. The hourly minimum voltage of four different strategies in the system.
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Fig. 7. The total active power injection from all four BESSs in the four
different strategies.

IV. CONCLUSION

An optimal day-ahead scheduling for ADN to maximize

the robustness against uncertainty is proposed in this paper.

The multiple uncertainties (PV generation and load demand)

present in ADN are addressed through the IGDT frame-

work. The overall scheme is formulated as a multi-objective

MISOCP problem. The multi-objective problem is solved

by forming the Pareto optimal front and selecting the best

solution through the fuzzy satisfaction method. The proposed

framework results on the modified IEEE 33-bus DN for four

strategies are discussed. The voltage profile is best in Strategy

1, but it is not advisable to implement it in practical scenarios

since uncertainty is not addressed in this strategy. The results

show that the robustness value increases with an increase in

the minimum requirement function value. In this work, the
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Fig. 8. Total reactive power injection from (a) BESSs (b)CBs.

computational time required to form a Pareto optimal front is

623.52 sec. Therefore, the operator can run the problem several

times by varying the permissible increase in the operational

cost and make decisions from these optimal robustness values

of PV generation and load demand. Therefore, the proposed

framework is robust against uncertainty, easy to implement,

and requires less computational time.

REFERENCES

[1] K. Mongird, V. V. Viswanathan, P. J. Balducci, M. J. E. Alam, V. Fotedar,
V. S. Koritarov, and B. Hadjerioua, “Energy storage technology and
cost characterization report,” tech. rep., Pacific Northwest National
Lab.(PNNL), Richland, WA (United States), 2019.

[2] S. Golshannavaz, S. Afsharnia, and F. Aminifar, “Smart distribution
grid: Optimal day-ahead scheduling with reconfigurable topology,” IEEE
Transactions on Smart Grid, vol. 5, no. 5, pp. 2402–2411, 2014.

[3] Y.-R. Lee, H.-J. Kang, and M.-K. Kim, “Optimal operation approach
with combined bess sizing and pv generation in microgrid,” IEEE
Access, vol. 10, pp. 27453–27466, 2022.

[4] S. Krishna, D. M, and S. R, “Optimal scheduling of distribution system
with pv and battery energy storage system,” in 2022 IEEE Kansas Power
and Energy Conference (KPEC), pp. 1–6, 2022.

[5] R. Zafar, J. Ravishankar, J. E. Fletcher, and H. R. Pota, “Optimal
dispatch of battery energy storage system using convex relaxations
in unbalanced distribution grids,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 1, pp. 97–108, 2020.

[6] S.-K. Kim, J.-Y. Kim, K.-H. Cho, and G. Byeon, “Optimal operation
control for multiple besss of a large-scale customer under time-based
pricing,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 803–
816, 2018.

[7] Y. Zheng, J. Zhao, Y. Song, F. Luo, K. Meng, J. Qiu, and D. J. Hill,
“Optimal operation of battery energy storage system considering distri-
bution system uncertainty,” IEEE Transactions on Sustainable Energy,
vol. 9, no. 3, pp. 1051–1060, 2018.

[8] K. Vemalaiah, D. K. Khatod, and N. P. Padhy, “Optimal day-ahead
scheduling for active distribution network considering uncertainty,” in
2022 IEEE International Conference on Power Electronics, Drives and
Energy Systems (PEDES), pp. 1–6, IEEE, 2022.

[9] K. Wang, C. Wang, Z. Zhang, and X. Wang, “Multi-timescale active
distribution network optimal dispatching based on smpc,” IEEE Trans-
actions on Industry Applications, vol. 58, no. 2, pp. 1644–1653, 2022.

[10] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term
residential load forecasting based on resident behaviour learning,” IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 1087–1088, 2018.

[11] M. Majidi, B. Mohammadi-Ivatloo, and A. Soroudi, “Application of
information gap decision theory in practical energy problems: A com-
prehensive review,” Applied Energy, vol. 249, pp. 157–165, 2019.

[12] Y. Ben-Haim, Info-gap decision theory: decisions under severe uncer-
tainty. Elsevier, 2006.

[13] M. Salimi, M.-A. Nasr, S. H. Hosseinian, G. B. Gharehpetian, and
M. Shahidehpour, “Information gap decision theory-based active distri-
bution system planning for resilience enhancement,” IEEE Transactions
on Smart Grid, vol. 11, no. 5, pp. 4390–4402, 2020.

[14] M. Izadi, S. H. Hosseinian, S. Dehghan, A. Fakharian, and N. Amjady,
“Resiliency-oriented operation of distribution networks under unex-
pected wildfires using multi-horizon information-gap decision theory,”
Applied Energy, vol. 334, p. 120536, 2023.

[15] A. Ahmadi, A. Esmaeel Nezhad, P. Siano, B. Hredzak, and S. Saha,
“Information-gap decision theory for robust security-constrained unit
commitment of joint renewable energy and gridable vehicles,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 5, pp. 3064–3075,
2020.

[16] A. O’Connell, A. Soroudi, and A. Keane, “Distribution network oper-
ation under uncertainty using information gap decision theory,” IEEE
Transactions on Smart Grid, vol. 9, no. 3, pp. 1848–1858, 2018.

[17] M. Asghari, A. M. Fathollahi-Fard, S. Mirzapour Al-E-Hashem, and
M. A. Dulebenets, “Transformation and linearization techniques in
optimization: A state-of-the-art survey,” Mathematics, vol. 10, no. 2,
p. 283, 2022.

[18] A. Soroudi, Power system optimization modeling in GAMS, vol. 78.
Springer, 2017.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY ROORKEE. Downloaded on April 24,2024 at 18:51:29 UTC from IEEE Xplore.  Restrictions apply. 


