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Abstract— This paper proposes a new cybersecurity resilient 

technique utilizing two-layer feedforward neural network 

(2LFFNN). It is also able to predict the correct value of the 

altered SV packets. The performance of the proposed technique 

is evaluated in accordance with the quartile-based differential 

protection (87Q) scheme, which provides superior performance 

compared to the conventional transformer differential 

protection (87T) scheme. Nevertheless, as per the statistical 

analysis, 87Q scheme is more vulnerable against cyber security 

threats in IEC 61850 enabled substation. The attacker can easily 

attack the IEC 61850 process layer and gain access to the SV 

messages, which carry current and voltage information of the 

substation equipment to the process layer. To test the proposed 

cybersecurity resilient scheme, 51000 cases of synthetic data, 

used for training 2LFFNN, pertaining to different types of 

attack are generated by modeling 87Q scheme in 

PSCAD/EMTDC software package. After training the neural 

network, the performance of the proposed 2LFFNN is verified 

during the FDI attack and SV packet loss/delay. The simulation 

results indicate that the proposed scheme is not only capable to 

identify cyber-attacks but also able to mitigate using 2LFFNN. 

Keywords— Cybersecurity, IEC 61850, Sampled value (SV) 

protocol, False data injection (FDI) 

I. INTRODUCTION 

A. Background 

Automation and digitalization focus heavily on 
information and communication tools and computer-aided 
communication technology. The terms "Smart Grid" and 
"Smart Substation" rest a lot on how well the system can 
communicate and integrate computing and/or communication 
technology. Such an integration makes it more susceptible to 
cyber threats/attacks [1]. The protocols for substation 
automation and control are built on IEC 61850 standards [2]. 
The efficacy of the “smart substation” depends on how well 
and accurately each piece of equipment and component is 
capable of communicating with each other. The IEC 61850 is 
a standard for integration and communication of protection, 
automation, and control instruments in electrical power 
systems. It provides a standardised method for devices in 
power systems to communicate with each other, regardless of 
their manufacturer or technology [3].  

B. Communication in Substation Automation System (SAS) 

 In SAS, the communication network is responsible for 
controlling, transmitting and distributing power as per IEC 
61850. The IEC 61850 describes a number of services and 
protocols, such as the Manufacturing Message Specification 
(MMS), the sampled value (SV) messaging, and the Generic 
Object Oriented Substation Event (GOOSE) messaging. The 
SAS network has three levels namely (i) station level, (ii) bay 
level and (iii) process level. The MMS is used for exchanging 
information between two substation devices whereas the SV 
messages carry recorded sampled values of the currents and 

voltages on the process bus and connect the instrument 
transformer with IEDs. On the other hand, the GOOSE 
messages are used for performing communication between 
IEDs and switchgears of substations. The process bus 
connects IEDs and substation equipments or instrument 
transformers of individual component as per IEC 61850-9-2 
over ethernet using IEC 8802-3 standards. The SAS utilizes 
several merging units (MUs), which convert voltages and 
currents of instrument transformers into IEC 61850-9-2 
compatible SV messages and make them available on the 
process bus for further utilization of IEDs. 

The SV and GOOSE messages are time-sensitive, due to 
which they are given higher priority in SAS. They are usually 
linked to the lower-level ethernet network using IEC 8802-3 
[4]–[6]. Time-sensitive messaging may lead to data 
transmission problems and cyber threats, such as SV packet 
loss or delay, time delay, mistakes in a bit, bit reversal, false 
data injection (FDI) attacks, loss of communication 
channel/link, denial of service attacks, etc. Additionally, 
unlike GOOSE messages, the SV messages are not 
broadcasted repetitively. This makes SV message delivery 
more critical in case of cyberattack or SV packet loss/delay. 

In case of conventional transformer differential protection 
(87T), the time-synchronised SV messages are required which 
utilize precision time protocol (PTP) as per IEEE 1588 
standards. As the said scheme needs reliable SV packet 
transfer, loss/delay of SV packet may lead to the mal-
operation of 87T [7]. Many researchers have tried to evaluate 
the performance of the IEC 61850-based bus and distance 
protection scheme and suggested corrective measures in case 
of SV packet loss or delay [8]– [9]. In [10], FDI attacks are 
detected for renewable-based power systems using machine 
learning (ML)/deep learning (DL) methods. A generative 
adversarial network (GAN) is adopted in [11] to detect FDI 
attacks on wide-area monitoring systems that focus on 
communication between substations and/or control centres. A 
least square fitting-based method is utilized in [12] for 
detection of FDI attacks in PMU data and provides a 
mitigation technique that helps in power system state 
estimation. Though the aforementioned three papers have 
carried out FDI attacks on control centres and power system 
operators, they have not considered attacks on the SAS level.   

Then, various anomaly detection algorithms are developed 
by tracking the digital footprints of the attacker in the SAS 
network [13]–[14]. Further, the specification-based intrusion 
detection system (IDS) is developed for IEDs placed at SAS 
[15]. Though this IDS is designed for GOOSE and SV 
messages, they do not provide any mitigation technique at the 
protection algorithm level. Subsequently, methods based on 
ML and DL have utilized for mitigation of FDI attacks on the 
PMU data [10], [16]–[19]. 



In this paper, a preventive framework is developed using 
2LFFNN which can effectively predict falsely injected data 
and packet loss/delayed data. The main contribution of the 
proposed work are as follows: 

1) The proposed algorithm is capable to detect as well 
as predict falsely injected data and packet loss/delay. 

2) The developed framework can be retrofitted in the 
existing IEDs as a pre-processing mechanism, which 
enhances security of IEC 61850 enabled sub-station 
against cyber-attacks. 

3) The suggested algorithm enhances the security of the 
existing 87Q against FDI attacks and SV packet 
loss/delay. 

The manuscript is organized as follows. In section II, 
layout of the SAS, quartile-based differential protection 
scheme and various cyber-attack scenarios are discussed. The 
proposed 2LFFNN based method is explained in the section 
III. In section IV, the performance of the proposed scheme on 
different FDI attacks and SV packet loss/delay is discussed. 
The section V concludes the paper. 

II. LAYOUT OF THE SAS FOR TRANSFORMER PROTECTION 

AND CONSIDERED CYBERATTACK SCENARIOS 

A. Layout of Transformer Protection in IEC 61850 enabled 

Substation 

The typical layout of the substation having SAS in 
accordance with IEC 61850 along with power transformer are 
shown in Fig. 1. The rating of the transformer is given in 
Appendix. The dedicated station MUs are installed for 
measuring currents and voltages from instrument transformers 
and broadcast them on the process level of the SAS in terms 
of SV packets as per IEC 61850-9-2 and IEEE 1588. As per 
IEC 61850, the MU needs to send the SV packet information 
with a sampling rate of 80 samples/cycle for protection 
application and 256 samples/cycle for power quality 
application. The IEDs (based on quartile-based differential 
protection scheme) can access the data that are available in 
terms of SV packets from MUs. Based on the SV packet 
information, IEDs will take decisions and notify the intended 
operation in the form of GOOSE messages to MUs. The MUs 
are capable to communicate with the switchgear of the 
substation and perform necessary actions. It is to be noted that 
IEDs can communicate at any level of SAS. Further, the 
attacker may enter to process, bay and station level. Fig. 1 also 
shows the layout of different levels of SAS where the intruder 
can attack the information. 

B. Quartile-based differential protection scheme 

The quartile-based differential protection scheme is 
presented in [20]. It is a statistical method, which divides any 
ordered dataset into 4 equal parts using quartiles (lower 
quartile (Q1), median quartile (Q2) and upper quartile (Q3)). 
According to IEC 61850, 80 samples/cycle data will be 
available at the process level. These data are utilized to 
calculate differential current samples (ID) and superimposed 
differential current (SID) samples for a duration of one cycle 
as per (1).  

SID ( )  ID ( )  ID ( T)t t t= − −  (1) 

where, ID is the differential current of the particular winding 
of the transformer, T is the total number of samples in a cycle. 

After calculating SID, the data are arranged in ascending 
order and the lower (Q1), median (Q2) and upper (Q3) 
quartiles are calculated as per (2). Further, the inter-quartile 
range (IQR) and pre-detection index (PDI) are calculated as 
per (3) and (4), respectively. 

( )Q(1/2/3)( ) = SID ( ) + SID( 1) SID( )t n p n n+ −  (2) 

where, p and l are the floor and fraction part of (T/4), (T/2) 
and (3T/4) for Q = 1, 2 and 3, respectively. 

IQR ( ) = Q3 ( )  Q1 ( )t t t−  (3) 

( ) ( ) 2
PDI ( ) = Q1 ( ) Q3 ( ) Q2 ( )  Q1 ( )t t t t t× −  (4) 

Further, to discriminate between internal fault and 
abnormal operating conditions of the transformer, a separate 
fault detection index (FDI), which is the ratio of PDI to IQR, 
is calculated as per (5). 

( ) = FDI ( ) PDI  IQR   100%( ) ( )  t t t ×  (5) 

 The value of threshold (th) is compared phase-wise to 
detect an internal fault. The value of th is selected as 4% by 
rigorous simulation study and real field data [20]. Here, any 
kind of FDI attack is possible which can change the ordered 
data set and may lead to incorrect selection of quartile which 
in turn may lead to the mal-operation of the technique.  

C. Various cyberattack scenarios 

The intruder can take access to any information if he/she 
connects at any level of the SAS. The MUs of the substation 
will continuously send the voltage and current information in 
terms of SV packets. The IEDs will read the SV packets and 
finally decide occurrence of a fault. If an intruder is present at 
any level of the SAS, it can access the information of the 
transmitting SV packet messages. In such a situation, the 
intruder can put false information in the SV packet messages. 
In this situation, the IED will not be able to discriminate 
between original data and falsely injected data. Hence, the 
quartile-based differential protection scheme may observe the 
non-fault condition as a fault condition due to FDI attacks. 
Further, the MUs of all the substation equipment put their data 
on the process level. As the IEC 61850's process level has a 

 
Fig. 1. Typical layout of IEC 61850 enabled substation 



lot of data, it may lead to data loss or delay. The SV packet 
data loss/delay of one side of the transformer winding may 
lead to the unnecessary generation of ID and SID of the 
particular phase. The IED may treat this condition as a fault 
and may mal-operate.  

III. THE PROPOSED APPROACH 

A. Two-layer Feedforward Neural Network (2LFFNN) 

A two-layer feedforward neural network is a type of 
artificial neural network that consists of an input layer, a 
hidden layer, and an output layer. The 2LFFNN is a fully 
connected neural network and it is also known as a multilayer 
perceptron (MLP). The hidden layer (one with a layer size of 
10 is used in this approach) performs a non-linear 
transformation of the input layer data. The main advantage of 
2LFFNN is that it can learn complex non-linear relationship 
between input and output data, making it useful for the 
prediction of affected SV packets in case of FDI attacks or 
SVs packet loss/delay. The output can be visualised as per 
(6). 

 = , 2 , 1 j j h h i i
h i

O g wout b g win X b
   

+ +   
   

   (6) 

where, ‘win’ and ‘wout’ is the weight function of the input 
and output layer, respectively, ‘b1’ and ‘b2’ is the biasing of 
the hidden layer and output layer, respectively, ‘i' is the size 
of the input data, ‘h’ is the size of hidden layers and ‘j’ is the 
size of the output. Here, values of ‘i’ and ‘j’ are taken as 80 
and the value of ‘h’ is considered as 10.  

The architecture of the proposed 2LFFNN is shown in 
Fig. 2. The input layer will have SV packets, which are 
available through the process level of IEC 61850-9-2. The 
incoming SV packets and past received SV packets (stored in 
buffer of the IED) are used together for input of the proposed 
2LFFNN. The proposed 2LFFNN utilizes 80 samples as input 
and gives 80 samples as output. The size of the input and 
output weight matrix is 10 × 80 and 80 × 10, respectively. 
The size of the hidden layer is considered as 10. In case of a 
FDI attack, the IED will receive manipulated SV packet 
instead of the original packet. Hence, before processing the 

manipulated SV packet, it is passed through the 2LFFNN 
network. The other SV packets will be used from the stored 
buffer of the IED. Using these SV packets, the proposed 
2LFFNN will sense the intrusion in the incoming SV packet. 
It performs the corrective measure and predicts the value of 
the original packet based on the past information of the 
received SV packets.  

B. Training of the 2LFFNN 

To avoid overfitting, it is necessary to generate enough 
data set for training of the neural network. This can be 
achieved by simulating different operating condition 
scenarios of the transformer in PSCAD/EMTDC software 
package. The data pertaining to various scenarios are 
collected in MATLAB environment. Various FDI attacks and 
SV packet loss/delay, generated by modeling various 
scenarios of transformer in PSCAD/EMTDC, are utilized to 
train the neural network. The same is depicted in Table-I. The 
Levenberg–Marquardt (LM) method is used to train the 
neural network [21] as it offers flexibility, reliability and 
faster convergence. Additionally, the mean square error 
(MSE) is used to measure the efficacy of the trained neural 
network. The entire dataset (as depicted in Table-I) is 
randomly divided into three parts namely (i) training (60%), 
(ii) validation (20%), and (iii) testing (20%). Further, the 
neural network was trained on the computer having Intel 
Xeon Gold 6226R CPU with (16×2 Cores), 1024 GB of RAM 
and 16 GB NVIDIA RTX A4000 GPU with 6144 CUDA 
cores. The trained neural network has an MSE of 0.0012 and 
a Pearson correlation coefficient (PCR) of 0.9997, which 
indicate effective training and correctness of the proposed 
2LFFNN.  

IV. PERFORMANCE EVALUTION 

The performance of the proposed 2LFFNN is checked for 
various FDI attack and SV packet loss/delay scenarios. 
Further, its performance is also checked in conjunction with 
quartile-based differential protection scheme. At last, points 
to be considered during hardware implementation of the 
proposed algorithm are also discussed. 
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Fig. 2. The architecture of the proposed 2LFFNN 

TABLE I.  CONSIDERED SCENARIO FOR GENERATION OF 

TRAINING DATA 

False Data Injection (FDI) attack 

Affected SV 

packet numbers 

No. test 

cases 

Affected SV 

packet numbers 

No. test 

cases 

1 1500 6 2500 

2 1500 7 3500 

3 1700 8 3500 

4 1800 9 3500 

5 2000 10 4000 

Total data for FDI attacks (A) 25500 

SV packet loss/delay 

Affected SV 

packet numbers 
No. test 

cases 
Affected SV 

packet numbers 
No. test 

cases 

1 1500 6 2500 

2 1500 7 3500 

3 1700 8 3500 

4 1800 9 3500 

5 2000 10 4000 

Total data for SV packet loss/delay (B) 25500 

Total data generated (A+B) 51000 

 



A. FDI attacks on the convention scheme 

Fig. 3 (a) shows a FDI attack on the current signal 
acquired from the conventional scheme and transmitted as SV 
packets. It is observed from Fig. 3 (a) that five SV packets are 
falsely injected. Fig. 3 (b) shows the performance of the 
2LFFNN during the said FDI attack. It is observed from Fig. 
3 (b) that the proposed approach is not only able to detect 
intrusion but also capable of predicting and replacing the 
false data as a preventive measure. 

B. Impact of FDI attack on 87Q 

Fig. 4 (a) shows waveform of current signal acquired from 
87Q based protection scheme with 10 altered SV packets. 
Due to falsely injected data, as observed from Fig. 4 (b), the 
87Q based protection scheme initiates unwanted tripping 
commend as the value of FDI exceeds threshold value (th).  

C. Mitigation of FDI attack by the proposed framework on 

87Q 

Fig. 5 (a) shows the response of the proposed framework 
on the current signal with 10 altered SV packets (as shown in 
Fig. 4 (a)). Further, the response of 87Q based protection 
scheme with the predicted signal given by the proposed 
framework, as depicted in Fig. 5 (a), is shown in Fig. 5 (b). 
The above discussion clearly indicates that the proposed 
framework is able to predict the falsely injected data. It also 

prevents the mis-operation of 87Q based protection scheme 
due to accurate reconstruction of the attacked signal. 

D. SV packet loss/delay 

Fig. 6 (a) shows the current signal in which eight SV 
packet loss/delay occurred. In such a situation, the 
corresponding sample is assumed to be zero. Hence, 87Q 
based protection scheme will get SV packets from one side of 
the transformer whereas on the other side SV packets will be 
delayed/lost due to which unwanted trip commands may be 
initiated. This can be mitigated by the proposed 2LFFNN-
based approach. Its response is shown in Fig. 6 (b). It is 
observed from Fig. 6 (b) that the proposed approach can 
predict the SV samples, which are lost/delayed due to process 
level traffic of the IEC 61850. 

E. Implementation of the 2LFFNN 

The proposed 2LFFNN uses 2-layer feedforward fully 
connected neural network. Due to a single hidden layer with 
its small size (only 10), the computational complexity is 
lower than other ML/DL-based methods. This computational 
complexity plays a crucial role in the implementation of the 
preventive framework on the existing IEDs in IEC 61850 
enabled sub-station as a pre-processing mechanism. Enough 
computational time should be available between two 
consecutive incoming SV packets so that the preventive 
framework (as suggested in this paper). This will also help 
the protection algorithm to complete its task and taking 
appropriate decisions based on the available packets. As the 
proposed method can be easily implemented/retrofitted 
together with the existing IEDs installed in IEC 61850 
enabled sub-station, it will reduce process-level threats. The 
proposed framework can be easily implemented on the 
hardware using the TMS320F28xx series-based digital signal 
processor (DSP) [22]/ Xilinx 7 series-SPARTAN 7-based 
field programmable gate array (FPGA)[23].  

V. CONCLUSION 

The proposed 2LFFNN can handle FDI attacks and SV 
packet loss/delay as per IEC 61850-9-2. Its performance is 
checked for quartile-based differential protection scheme 
which is highly vulnerable against cyberattacks. The 
proposed 2LFFNN can be placed ahead of the protection 
scheme in the IEDs of SAS so that all incoming traffic of 
IEDs can be passed through it. This will lead to the detection 
of any intrusion/discrepancy in the data and preventive action 
can be taken. The results indicate that the proposed 2LFFNN 
can easily detect FDI attacks and compensate for the SV 
message packet loss/delay. At the same time, it also prevents 
mal-operation of the existing quartile-based differential 
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Fig. 3. (a) FDI attack in the form of current signal with 5 altered SV 
packets and (b) Response of the proposed approach. 
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Fig. 4. (a) FDI attack on current signal with 10 altered SV packets and 
(b) Response of the 87Q based protection scheme 
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Fig. 5. (a) Response of the proposed framework on current signal with 
10 altered SV packets and (b) Response of the 87Q based protection 
scheme  
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Fig. 6. (a) SV packet loss/delay on the acquired current signal with 8 SV 
packet loss/delay and (b) Response of the proposed framework 



protection in case of FDI attacks or SV packet loss/delay. Due 
to less computational complexity, the proposed 2LFFNN can 
easily be implemented at IEDs and the upcoming traffic 
should pass from 2LFFNN to identify and mitigate cyber-
threat. 

APPENDIX 

Power Transformer data: 3-phase, 315 MVA, 50 Hz, 400 
kV/220 kV, Yd1, Reactance in terms of per phase: 12.5 %, 
Inrush current in terms of percentage of rated current: 0.1% 
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